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Abstract 
Introduction. Citation count prediction (CCP) models are vital for assessing 
research impact, yet existing approaches suffer from critical limitations. Prior 
studies often rely on restricted datasets (e.g., journal metrics alone) or fail to 
account for the multidimensional factors influencing citations, leading to 
suboptimal accuracy.  

Method. We propose an accurate CCP regression model for Computer Science and 
Electrical Engineering disciplines found on twenty three novel features extracted 
from public data in Google Scholar profiles and the Journal Citation Reports (JCR) 
annual report by splitting features into four datasets: Author information database 
(AI DB), journal information database (JI DB), paper information database (PI DB), 
and finally author & paper & journal information database (APJ DB). 

Analysis. Our evaluation employed Mean Absolute Error (MAE), Mean Squared Error 
(MSE), Mean Absolute Percentage Error (MAPE), and the Coefficient of 
Determination (R²) to assess model performance. Dimensionality reduction 
techniques like Principal Component Analysis (PCA) and t-Distributed Stochastic 
Neighbor Embedding (t-SNE) were also applied, and their effect on CCP was 
assessed.   

Results. We identified that paper-level features (PI DB) were significantly more 
predictive than author or journal attributes, resolving a key debate in CCP research.  

Conclusions. This study enhances CCP research by introducing scalable, publicly 
available features, demonstrating the superiority of paper-level attributes through 
empirical evidence, and identifying Nu-SVR as the most effective algorithm for 
accurate and interpretable citation prediction, supporting researchers, institutions, 
and policymakers in assessing research impact. 
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Introduction  
Citation is considered in scientometrics as the reference of one published document in another 
document. It also is a degree to evaluate the prominence and measure of research outputs because 
it presents how usually a specific work is referenced in alternative scholarly literature. A high 
citation count often indicates that a work has significantly impacted its field, influencing 
subsequent research and scholarship (Blümel & Schniedermann, 2020; Broadus, 1987; Moed, 2006; 
Khokhlov, 2020). So it can act as an indicator of research quality; works with high citation counts 
are often thought to be more valuable or credible than less cited peer-reviewed literature 
(Bornmann & Daniel, 2008; Butler & Visser, 2006). Citation counts can also provide to spot trends 
in research over time, indicating areas of growing interest, and shifts in the scientific landscape. 
Besides, citation counts play a key role in resource allocation decisions, as funding agencies and 
institutions also rely on these metrics to decide which research areas or researchers are worthy 
of support. Overall, citation counts play a vital role in academic communication, evaluation, and 
the advancement of knowledge in various fields (Abramo et al., 2023; Belikov & Belikov, 2015; Cao 
et al., 2016; Durieux & Gevenois, 2010; Gao et al., 2024; Groos & Pritchard, 1969; Sohrabi & Iraj, 2017; 
Yu et al., 2014).  

On the other side, several famous bibliometrics measures, including Impact Factor (IF) and h-
index, are also based on citations from publications and journals. In the early 1960s, the IF was 
introduced by the Institute of Scientific Information (ISI) (Garfield, 2006). The IF is determined by 
the number of citations it receives throughout the year. The IF is calculated by dividing the current 
number of citations by the number of articles published in the last two years. As a result, the 
performance of a journal can be directly estimated based on its IF (Amin & Mabe, 2003; Bornmann 
& Daniel, 2009; Braun et al., 2006; Durieux & Gevenois, 2010; Hirsch, 2010; Lundberg, 2006). It has 
been criticized for not taking into account the diversity of individual researchers among different 
fields of study and for being inaccurate in terms of its purpose. In addition, researchers were given 
an index called the h-index in order to measure their objective function. To determine an author's 
h-index, one must determine how many of his or her articles have been cited directly by other 
researchers at least a similar number of times (Braun et al., 2006; Fassin, 2020; Hirsch, 2010; 
Khurana & Sharma, 2022). In addition, Q1 to Q4 quartile rankings for journals are provided by two 
key sources: Clarivate Analytics and Elsevier. Clarivate’s Journal Citation Reports (JCR) ranks 
journals based on their Impact Factor (IF) through its Web of Science platform, assigning quartiles 
from Q1 (top 25%) to Q4 (bottom 25%). Elsevier’s Scopus platform uses the SCImago Journal Rank 
(SJR), which evaluates journals based on citation impact and assigns similar quartiles. Both systems 
are widely recognized and used for academic journal rankings globally, guiding researchers in 
assessing and selecting journals for publishing their work (Almas et al., 2021; González-Betancor & 
Dorta-González, 2017; Kosyakov & Pislyakov, 2024; Moussa, 2023; Okagbue et al., 2020; Okagbue 
et al., 2021; Teixeira da Silva, 2020; Torres-Salinas et al., 2022). 

Gao et al., 2024 leveraged multi-layer academic networks to improve citation count predictions 
by fusing different relationship types between publications. The authors show how taking this 
multilayer perspective of academic relations can enhance precision. Their model offers the ability 
to capture complexity in citation dynamics. Nevertheless, the intricacy of a multi-layered network 
could impose difficulties in model interpretability, hindering researchers from interpreting the 
mechanisms that power predictions. Also, the model performance may depend on the quality of 
the network that it is trained on, which may differ greatly between different sectors. 

The process of peer reviewing is widely accepted as a means of evaluating papers (Li et al., 2019). 
It is important for a reviewer to evaluate the originality, creativity, contribution, integrity, and 
readability of a paper. Since peer-reviewing data includes the assessment comments of related 
experts, it may also be possible to predict the future influence of a paper. The algorithm of a 
comprehensive review paper has made it possible to obtain peer-reviewed data for the Citation 
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count prediction (CCP) task. It is apparent in their comments that they focus on issues that are not 
directly related to the paper's main contribution. Reviewers may include reminders regarding 
formatting issues in their reviews. Several people may be reviewing articles at the same time, 
resulting in differing opinions. Therefore, when determining the impact of a paper, the coverage 
and divergence of review comments would both be considered (Li et al., 2019).  

While citation count prediction is a relatively well-explored area, many existing studies did not 
comprehensively consider the multitude of factors influencing citations, particularly in specialized 
fields like Computer Science and Electrical Engineering  (Aksnes et al., 2019; Baas et al., 2020; 
Enduri et al., 2022; Furman & Teodoridis, 2020; He et al., n.d.; Zhang et al., 2025; Hutchins et al., 
2016; Okagbue et al., 2020). 

Citation patterns can vary across disciplines, so our work aimed at citation count predictions of 
academic papers for computer science and electrical engineering disciplines. Due to the fact that 
both Google Scholar and JCR are well-respected sources in the academic community and public 
availability of data, we suggested mainly gathering raw data from Google Scholar Profiles (GSPs) 
and public JCR annual reports. The GSP offers a wide range of citation information, such as 
Citation, h-index, and i10-index, while the JCR reports provide metrics like IF and journal rankings 
(Q1, Q2, Q3, Q4). Combining these two main data sources can enrich our feature set and help 
capture more nuanced aspects of citation behavior, making our model more accurate. Raw data 
like citation counts, h-index, or publication year are useful but limited in their predictive power. 
Citations are influenced by a variety of factors, and raw data may not fully capture non-linear 
relationships between these factors. Creating new features can improve the performance of the 
citation count prediction model by uncovering hidden patterns and relationships that raw data 
alone cannot reveal. As a result, our approach includes twenty three unique and novel features, 
offering a fundamental understanding of the factors that may impact citation count. The citation 
count was then estimated using a number of robust regression techniques, including SVR, Nu-SVR, 
Linear SVR, K-Nearest Neighbors (KNN), Decision Tree (DT), Bayesian Ridge, and SGD Regressor. 
We also assessed our method using several performance measures including the mean absolute 
percentage error (MAPE), Mean Square Error (MSE), Mean Absolute Error (MAE), and R-squared. 
The study also utilized PCA and t-SNE for dimensionality reduction and examined their impacts 
on CCP. 

The rest of this paper is organized as follows: Section two discusses related works. In section three, 
our methodology is introduced. Simulation results are presented in section four, and section five 
is the conclusion. 

Related work 
Citation count prediction (CCP) has been approached from multiple perspectives, including 
network-based modeling, textual analysis, trend forecasting, and deep learning. While existing 
methods offer valuable insights, they often focus on isolated aspects of the problem, leaving room 
for a more holistic and generalizable approach (Bai et al., 2025; He et al.,2025; Zhang et al, 2025, 
Zhu et al.,2025). 

Early work by (Pobiedina & Ichise, 2016) framed CCP as a link prediction problem, leveraging 
citation networks to model future citations. While this approach captures structural dependencies, 
it overlooks critical external factors such as author reputation and research competitiveness. 
Similarly, (Wang et al., 2023) introduced AGSTA-NET, a spatio-temporal fusion model that 
improves dynamic citation network analysis. However, its computational complexity and reliance 
on heterogeneous network data may limit scalability. These studies highlight the potential of 
network-based methods but also reveal their dependence on well-structured citation data, which 
may not always be available 
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Recent work has explored the role of textual features in CCP. For example, (Li et al., 2019) 
incorporated peer review text into a neural network model, demonstrating that qualitative 
feedback can enhance prediction accuracy. However, their reliance on peer review data—which 
varies widely across disciplines—poses a generalizability challenge. Similarly, (Sohrabi & Iraj, 2017) 
focused on keyword frequency, showing that strategic keyword use can improve visibility. Yet, 
their model neglects broader contextual factors, such as journal prestige or research impact. Baba 
et al. (2019) extended textual analysis to paper abstracts but did not account for external citation 
influences. These studies suggest that while textual features are valuable, they must be integrated 
with other predictive factors for robust performance. 

Historical citation trends have also been used for prediction. (Li et al., 2015) demonstrated that 
temporal patterns improve out-of-time forecasts, but their model struggles with disruptive 
research that defies conventional citation trends. Meanwhile, (Abrishami & Aliakbary, 2019) applied 
deep learning, achieving superior accuracy over traditional methods. However, their approach 
requires large datasets and risks overfitting, limiting applicability in low-data scenarios. 

Existing CCP methods face key limitations: network models ignore external factors; textual 
approaches lackgeneralizability; trend-based methods fail with disruptive research; and deep 
learning requires excessive data. Most critically, no unified framework integrates multi-modal data 
while ensuring efficiency and interpretability (Nguyen et al., 2025; Zafar et al., 2024). 

Methodology 
In this paper, we aim to predict the citation count of an article. An article's citation count is a 
suitable determinant for the impact assessment. For this purpose, we have created and developed 
four datasets that are called Author Information Database (AI DB), Journal Information Database 
(JI DB), Paper Information Database (PI DB), and finally Author & Paper & Journal Information 
Database (APJ DB). Figure 1 depicts the proposed algorithm. The initial preprocessing step 
normalizes the data. Then, we can predict the citation count of a published paper using several 
robust regression algorithms such as K-Nearest Neighbors (KNN), Decision Trees (DT), and 
Support Vector Regression (SVR), and Bayesian Regression methods, along with some of the most 
important performance metrics in regression problems such as Mean Absolute Error (MAE), Mean 
Squared Error (MSE), Mean Absolute Percentage Error (MAPE), and the Coefficient of 
Determination (R²) for evaluation of the achieved results. To improve interpretability, we also 
assessed the influence of dimensionality reduction techniques (e.g., t-SNE and PCA) on the results 
and discussed their comparative effects. 

From data to information: Creating some comprehensive database 
The data collection process was conducted in two phases. In the first phase, at the end of 
December 2022, all input features were gathered. The second phase, at the end of 2023, involved 
collecting the output data (predictions). Data sources included Google Scholar profiles, the Journal 
Citation Reports (JCR) annual report, and SCImago (to obtain the SJR metric). The dataset only 
focuses on papers in Computer Science (CS) and Electrical Engineering (EE). Additionally, we 
developed a specialized dataset called AoI2WoS (Bahaghighat et al., 2024; Jahani rad et al., 2024), 
which establishes a connection between Areas of Interest (AoI) in GSP and Web of Science (WoS) 
scientific fields. This dataset was used to evaluate whether a given GSP is related to Computer 
Science (CS) or Electrical Engineering (EE), allowing us to filter out irrelevant profiles and focus on 
approximately 2,000 papers from randomly selected authors in these fields.  

To create the AI DB, the author's scholarly background is examined found on ten suggested 
attributes. AI DB includes the information of the authors such as 𝑁𝑁𝑝𝑝, 𝑁𝑁𝑝𝑝𝐶𝐶=0, 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑝𝑝 , 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚10 , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, ℎ −
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜, 𝑖𝑖10 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑌𝑌𝐹𝐹𝐹𝐹 , 𝑌𝑌𝐿𝐿𝐿𝐿, and 𝑇𝑇𝑊𝑊𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 which can be seen with more details in Table 1. The 
second dataset is the JI DB. According to Table 2, we have gathered numerous critical information 
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such as Impact Factor (IF), h-index, SJR,  Q1, Q2, Q3, Q4, and Q (Best quartile among all disciplines) 
in the JI DB. The third dataset is called the PI DB, in which some features of published papers were 
defined. According to Table 3, some attributes such as 𝑇𝑇𝑊𝑊

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (availability of the paper from 
publication year to current year), 𝐶𝐶𝑚𝑚

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 (citation of the manuscript in publication year), 
𝐶𝐶𝑚𝑚
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 (citation of the manuscript in the last year), and 𝑁𝑁𝐴𝐴 (Number of Authors). Finally, the APJ 

DB has been constructed based on all information available in all three mentioned datasets 
(including all twenty-three defined features). 

 

 

Figure 1. An illustration of the proposed citation count prediction algorithm (CCP). 

 

Row Attributes Comments 

1 𝑁𝑁𝑝𝑝 Total number of publications for the author 

2 𝑁𝑁𝑝𝑝𝐶𝐶=0 Total number of publications without citations for the author 

3 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑝𝑝  The most citation for an author: 𝑚𝑚𝑚𝑚𝑚𝑚 (𝐶𝐶𝑖𝑖),for 𝑖𝑖 = 1 to 𝑁𝑁𝑝𝑝 

4 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚10  Sum of top ten citation for an author: 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚10 = ∑ 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑡𝑡ℎ𝑖𝑖=10
𝑖𝑖=1  

5 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 Total citations for an author 

6 ℎ − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 h-index for an author 

7 𝑖𝑖10− 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 i10-index for an author 

8 𝑌𝑌𝐹𝐹𝐹𝐹 First publication year: Author’s first publication (in year) 

9 𝑌𝑌𝐿𝐿𝐿𝐿 Last publication year: Author’s last publication ( in year) 

10 𝑇𝑇𝑊𝑊𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 𝑇𝑇𝑊𝑊𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 = 𝑌𝑌𝐿𝐿𝐿𝐿 − 𝑌𝑌𝐹𝐹𝐹𝐹 

Table 1. Proposed attributes in author information dataset (AI DB). 
 
Figure 2 shows an example of an author's Google Scholar profile. In addition, some characteristics 
of the proposed dataset can be seen in Figure 3, and Figure 4. 
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Row Attributes Comments 

1 IF The Impact Factor of a journal 

2 Q1 Top 25% of journals (if a journal is Q1 then Q1=1, Q2=Q3=Q4=0) 

3 Q2 25% to 50% of journals (if a journal is Q2 then Q2=1, Q1=Q3=Q4=0) 

4 Q3 50% to 75% of journals (if a journal is Q3 then Q3=1, Q1=Q2=Q4=0) 

5 Q4 75% to 100% of journals (if a journal is Q4 then Q4=1, Q1=Q2=Q3=0) 

6 Q Q is derived from Q1 to Q4. It is equal to 1.00 for 𝑄𝑄1; 0.75 for 𝑄𝑄2; 0.50 for 𝑄𝑄3; 0.25 
for 𝑄𝑄4 according to the best quartile among all disciplines 

7 SJR The SCImago Journal Rank 

Table 2. Proposed attributes in journal information dataset (JI DB). 

 

Row Attributes Comments 

1 𝑇𝑇𝑊𝑊
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 It shows how many years the paper is available online 

2 𝐶𝐶𝑚𝑚
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 The total citations of the paper in the published year 

3 𝐶𝐶𝑚𝑚
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿−𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 The total citations of the paper in the last year 

4 𝑁𝑁𝐴𝐴 Number of authors in a paper 

5 OAA Open Access Article 

Table 3. Proposed attributes in paper information dataset (PI DB). 

 

 
Figure 2. The author information in its Google Scholar profile. 
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Figure 3. The histograms of some features in the JI DB dataset 

 
Figure 4. The histograms of some features in the AI DB dataset. 

Regression models 
In statistical approaches, Regression Analysis (RA) is considered a set of statistical procedures to 
estimate the relationships between an output (dependent variable) and one or more inputs 
(independent variables). As a statistical method, regression describes the relationship between two 
or more inputs and outputs (Fox, 2015; Rostami et al., 2021). In this paper, we deploy several strong 
regression models to predict the number of citations of a paper. 

SVR and linearSVR 
Machine learning (ML) is a sub-field of Artificial Intelligence (AI) that enables systems to learn 
automatically, and as opposed to being explicitly programmed, they can improve their decision-
making abilities by acquiring experience (Chen et al., 2024). Support Vector Regression (SVR) 
(Hearst et al., 1998; Smola & Schölkopf, 2004) distinguishes itself by employing the Structural Risk 
Minimization (SRM) principle, a foundation rooted in statistical learning theory. SRM's core 
objective is to craft a hypothesis (h) that minimizes the true error when applied to unseen and 
randomly sampled testing data. Notably, SVR excels in handling outliers, a critical advantage in 
practical applications. In general, SVR estimation functions have the following form (Basak et al., 
2007; Smola & Schölkopf, 2004): 

𝑓𝑓(𝑥𝑥) = (𝑤𝑤 ∙ 𝜙𝜙(𝑥𝑥)) + 𝑏𝑏 (1) 

Where 𝑏𝑏 ⊂ 𝑅𝑅 and 𝜙𝜙 indicate a nonlinear conversion from 𝑅𝑅𝑛𝑛  (the real coordinate space or real 
coordinate n-space, of dimension n) to high-dimensional space, the aim is to indicate the value of 
w. In order to compute the value of x, it is necessary to minimize the regression risk. Minimizing 
the regression risk determines the values of x. 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟(𝑓𝑓) = 𝐶𝐶�𝛤𝛤
𝑙𝑙

𝑖𝑖=0

(𝑓𝑓(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖) +
1
2
∥ 𝑤𝑤 ∥2 (2) 

The cost function is 𝛤𝛤(. ).  In Support Vector Regression (SVR), the cost function aims to minimize 
the discrepancy between the model's output and the actual values corresponding to the training 
data. C is a constant value, and vector w can be calculated as below: 

𝑤𝑤 = �(𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)
𝑙𝑙

𝑖𝑖=1

𝜙𝜙(𝑥𝑥𝑖𝑖) (3) 

Using substituting Eq. (3) into Eq. (1), the general equation can be revised as the Eq. (4): 
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𝑓𝑓(𝑥𝑥) = �(𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)
𝑙𝑙

𝑖𝑖=1

�𝜙𝜙(𝑥𝑥𝑖𝑖) ∙ 𝜙𝜙(𝑥𝑥)� + 𝑏𝑏 = �(𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)
𝑙𝑙

𝑖𝑖=1

𝑘𝑘(𝑥𝑥𝑖𝑖 . 𝑥𝑥) + 𝑏𝑏 (4) 

In Eq. (4), the function was replaced with dot product 𝑘𝑘(𝑥𝑥𝑖𝑖 , 𝑥𝑥), that function 𝑘𝑘(𝑥𝑥𝑖𝑖 , 𝑥𝑥) familiar as the 
kernel function. In a high-dimensional feature space, evaluate the dot function based on low-
dimensional input data without understanding how the transformation is performed. There is a 
condition of Mercer that all kernel functions must satisfy, which is equivalent to the inner product 
of some feature space. For regression, the Radial Basis Function (RBF) is used as the standard 
kernel. RBF kernels are presented in the following equation. 

𝑘𝑘(𝑥𝑥𝑖𝑖 . 𝑥𝑥) = 𝑒𝑒𝑒𝑒𝑒𝑒{−𝛶𝛶 ∥ 𝑥𝑥 − 𝑥𝑥𝑖𝑖 ∥2} (5) 

A few standard kernels in SVR are Linear (𝑥𝑥 × 𝑦𝑦), Polynomial ([(𝑥𝑥 × 𝑥𝑥𝑖𝑖) + 1]𝑑𝑑), Radial Basis Function 
(𝑒𝑒𝑒𝑒𝑒𝑒{−𝛾𝛾 ∥ 𝑥𝑥 − 𝑥𝑥𝑖𝑖 ∥2}) are shown in Table 4. 

Kernel Function 

Linear Simple, faster, and lower accuracy for nonlinear data 

Polynomial Fast and more flexible 

RBF More flexible and higher accuracy 

Table 4. Common kernel function (Basak et al., 2007; Smola & Schölkopf, 2004). 

Nu-SVR 
In Nu-SVR, the inclusion of the epsilon parameter allows for the control of the number of support 
vectors retained in the solution. The introduction of the nu parameter further provides a 
mechanism to manage support vectors by specifying the proportion of these vectors relative to 
the total number of samples in the dataset. Given a sample pair of the dataset, including input-
output {(𝑥𝑥1,𝑦𝑦1), (𝑥𝑥2,𝑦𝑦2), … , (𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛)}, the Nu-SVR method is used to approximate a nonlinear 
relationship. It is used to minimize overfitting by getting as close as possible to the target function 
(Bhatt et al., 2012; Smola & Schölkopf, 2004). The types of kernels that could be used are a 
polynomial function, Radial Basis Function (RBF), a sigmoid function, and a linear function. 

KNN 
The k-Nearest Neighbors (kNN) method (Cover & Hart, 1967)is widely adopted in data mining and 
statistics for its simplicity and notable classification performance (Cunningham & Delany, 2021; 
Halder et al., 2024). Despite its ease of implementation, the kNN method has demonstrated 
significant classification prowess and has been shown to approximate the error rate of Bayes 
optimization under mild conditions. Its versatility extends to various applications, including 
regression, classification, and missing value imputation. However, the efficacy of the kNN method 
is contingent upon factors like the choice of the k value and the selection of distance measures. 
Addressing these considerations has led to the development of numerous machine learning 
techniques aimed at optimizing the performance of the kNN method. In order to solve 
classification problems, KNN is a highly beneficial approach (Halder et al., 2024; Sabry, 2023; Song 
et al., 2017). The unique property was calculated where no explicit step is required in the training 
phase (other than the capacity of the training database). Based on the data in the testing dataset, 
kNN is used to evaluate the answer to 𝑥𝑥𝑡𝑡 as a weighted mean of the responses of the k nearest 
training points 𝑥𝑥(1), 𝑥𝑥(2), . . . , 𝑥𝑥(𝑘𝑘) the neighborhood of 𝑥𝑥𝑡𝑡. This function can calculate how near each 
training data point 𝑥𝑥𝑖𝑖 is to the testing data point 𝑥𝑥𝑡𝑡 using the weighted Euclidean distance, 
described as (Halder et al., 2024; Sabry, 2023): 
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𝑑𝑑(𝑥𝑥𝑡𝑡 . 𝑥𝑥𝑖𝑖) = ��𝑊𝑊𝑛𝑛

𝑁𝑁

𝑛𝑛=1

(𝑥𝑥𝑡𝑡.𝑛𝑛. 𝑥𝑥𝑖𝑖.𝑛𝑛)2 (6)  

Then, we apply the kernel of the regression and calculate the following approximation of the 
response of 𝑥𝑥𝑡𝑡 (Yao & Ruzzo, 2006): 

𝑓𝑓(𝑋𝑋𝑡𝑡) =
∑ 𝜎𝜎𝑘𝑘
𝑖𝑖=1 �𝑋𝑋𝑡𝑡 .𝑥𝑥(𝑖𝑖)�𝑓𝑓(𝑋𝑋𝑖𝑖)
∑ 𝜎𝜎𝑘𝑘
𝑖𝑖=1 �𝑋𝑋𝑡𝑡 . 𝑥𝑥(𝑖𝑖)�

 (7) 
 

Decision tree  
Decision rees are a widely used ML method for both classification and regression problems. It 
consists of a tree structure with internal nodes containing tests on features, branches 
representing the output of the tests, and leaf nodes containing the predicted output values when 
the path from the root to the leaf node has been established. Then, the data is split recursively on 
the feature that would result in the best split, often according to criteria like mean squared error 
or variance. Decision Trees can handle continuous and categorical variables, and in the case of 
continuous variables, the algorithm seeks a threshold in order to perform the split. Their simplicity 
and interpretability, as well as a potential to highlight relevant features, make them widely utilized 
for feature selection  (Bishop, 2006). 

Bayesian Regression 
Bayesian Regression uses Bayesian statistics to estimate the parameters of the regression model. 
It uses some prior beliefs regarding the parameters, which are modified using observed data, to 
form posterior distribution through the Bayes Theorem. Bayesian Regression, on the other hand, 
provides a posterior distribution over parameters, which is a more robust and flexible approach 
than classical regression methods. It is however, computationally expensive and requires the 
proper choice of prior distributions, which would add some subjective influence. The Bayesian 
Regression could give you better estimates, but it is not without its challenges. However, it is also 
widely used in fields such as finance, engineering, social sciences, etc. (Bishop, 2006; Pedregosa et 
al., 2011). 

SGDRegressor   
It is basically a linear regression in scikit-learn with a Stochastic Gradient Descent (SGD) optimiser 
to learn the optimal set of parameters for our model. In contrast to the previous update, traditional 
gradient descent updates weights after the whole dataset is processed, while SGD performs it for 
every single sample, which is therefore more computationally effective, particularly with large 
datasets. This model is perfect when your features are sparse and your data is high-dimensional 
(Pedregosa et al., 2011). 

Dimension reduction 
Essentially, Dimension reduction (DR) is one of those very prominent techniques you would often 
use if working on machine learning or data analysis projects, and it basically simplifies your data 
sets by reducing the number of variables to only those that are significant. PCA (Principal 
Component Analysis) is probably the most famous DR method, which converts the data into a new 
set of variables (principal components) that are all orthogonal (no correlation). PCA achieves 
dimensionality reduction with minimum data loss by choosing the best components. However, the 
effectiveness of PCA is closely related to the data/model you use. This can eliminate noise, too, 
but this sacrifices interpretability and might go with it, model performance. Hence comparison 
should be made between models with and without PCA to check the effect (Bishop, 2006; 
Pedregosa et al., 2011). In our analysis, we applied both t-SNE (t-Distributed Stochastic Neighbor 
Embedding), and PCA for dimensionality reduction. t-SNE  is a nonlinear dimensionality reduction 
technique widely used for visualizing high-dimensional data. Unlike linear methods such as PCA, 
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it focuses on preserving local similarities between data points by modeling pairwise probabilities 
in both the original and reduced spaces. It employs a t-distribution in the low-dimensional space 
to mitigate crowding effects, making it particularly effective for revealing clusters or manifolds in 
complex datasets (e.g., images or biological data). However, t-SNE’s results can be sensitive to 
hyperparameters (e.g., perplexity) and computationally intensive for large datasets (Skrodzki et al., 
2024; Jung et al., 2024). 

Performance metrics 
Here we discuss methods for calculating errors in the proposed CCP model. In our research, we 
have used a variety of error measurement methods, such as Mean Absolute Error (MAE), Mean 
Square Error (MSE), Mean Absolute Percentage Error (MAPE), and R-squared (R2). An important 
loss function in regression analysis is the Mean Square Error (MSE) (Cameron & Windmeijer, 1997; 
Murphy, 1988 ;Wallisch et al., 2022; Willmott & Matsuura, 2005). The mean squared distance 
between the predicted and actual values is calculated using this loss function. Below is a 
description of how it is calculated: 

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑖𝑖 − 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 (8)  

Other errors that have been used in this paper are MAE, MAPE, and R2: 

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ 𝑝𝑝𝑛𝑛
𝑖𝑖=1 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑖𝑖 − 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑖𝑖

𝑛𝑛
 (9)  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
∑

𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑖𝑖
𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑖𝑖

𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 

(10) 
 

𝑅𝑅2 =
∑ (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑖𝑖)𝑛𝑛
𝑖𝑖=1

∑ (𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑖𝑖 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑖𝑖)𝑛𝑛
𝑖𝑖=1

 (11)  

𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒(𝑖𝑖) =
1
𝑛𝑛
�𝑡𝑡
𝑛𝑛

𝑖𝑖=1

𝑟𝑟𝑟𝑟𝑒𝑒𝑖𝑖 (12) 
 

 
Results 
In this paper, seven distinct regression methods, including SVR, Nu-SVR, Linear SVR, kNN, 
Decision Tree Regression, Bayesian Ridge, and SGD Regression, were trained to find the best 
Citation count prediction (CCP) solution.  We also used several error methods for estimating the 
errors, such as Mean Absolute Error (MAE), Mean Squared Error (MSE), Mean Absolute Percentage 
Error (MAPE), and the Coefficient of Determination (R²), to measure the algorithm performance 
for the Author information database (AI DB), journal information database (JI DB), paper 
information database (PI DB), and finally author & paper & journal information database (APJ DB), 
separately. We also tested APJ DB and AI DB in two scenarios, with dimension reduction and 
without it. All of our simulations have been implemented using Python software and were run on 
a Lenovo device with a 2.5 GHz Intel Core i7 processor and 16 GB DDR4 RAM. The results obtained 
from the different methods are presented from Table 5 to Table 17.  

In our experiment, Grid search that is a hyperparameter tuning technique was used to 
systematically work through multiple combinations of parameter values to determine which 
combination yields the best model performance. 
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Model Best Parameters 

SVR {'C': 29.108, 'gamma': 0.00156, 'kernel': 'rbf'} 

Nu-SVR {'C': 122.519, 'gamma': 0.000535, 'kernel': 'rbf', 'nu': 1} 

LinearSVR {'C': 0.01672, 'epsilon': 0.01682, 'loss': 'epsilon_insensitive'} 

KNeighbors 
Regressor 

{'n_neighbors': 1} 

Decision Tree 
Regressor 

{'criterion': 'squared_error', 'max_depth': 24.42, 'splitter': 'random'} 

Bayesian Ridge {'alpha_1': 3.59e6, 'alpha_2': 10.0, 'lambda_1': 1e11, 'lambda_2': 21544.35, 'n_iter': 1} 

SGD Regressor {'alpha': 0.07508, 'epsilon': 12.07867, 'penalty': 'elasticnet'} 

Table 5. Primary grid search results for suggested models. 

In Table 5,  max_depth=24.42 suggests a deep tree for DecisionTree Regressor, which may be 
harder to interpret than a shallower one. So, we could constrain max_depth to a smaller value 
about 5 during grid search. Furthermore, KNeighborsRegressor with n_neighbors=1 may highly 
prone to overfitting and lacks interpretability. As a result, a higher value at 5 was selected. 
LinearSVR and SGDRegressor use regularization (C, alpha). A low C=0.01672 (LinearSVR) suggests 
strong L2 regularization, which can simplify the model by shrinking coefficients. In addition, 
SGDRegressor uses penalty='elasticnet', which can promote sparsity, making feature importance 
clearer. For Kernel Choices in SVM Models Both SVR and Nu-SVR use the 'rbf' kernel, which is 
inherently less interpretable than a linear kernel. As a result, for considering interpretability, we 
could restrict the search to kernel='linear'.  For Bayesian Ridge’s Complexity, the high values for 
lambda_1=1e11 and alpha_1=3.59e6 suggest strong prior assumptions, but the model remains 
interpretable since it’s a linear regression variant. 

Table 6 presents the performance of various regression models on the APJ dataset without any 
dimensionality reduction. The best-performing models are SVR and Decision Tree Regression, 
both achieving an MAE of 0.16, MSE of 0.50, and R² of 0.48, indicating strong predictive accuracy 
and stability. Nu-SVR also performs well with the lowest MAPE (0.36), suggesting better relative 
error control. In contrast, K-Neighbors Regression and Bayesian Ridge show slightly higher errors, 
while Linear SVR and SGDRegression exhibit the weakest R² scores (0.35 and 0.43, respectively). 
Overall, non-linear models (SVR, Decision Tree) outperform linear ones, likely due to their ability 
to capture complex relationships in the data. 
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Regression models MAE MSE MAPE R2 

SVR 0.17 0.50 0.50 0.48 

Nu-SVR 0.16 0.56 0.36 0.43 

Linear SVR 0.17 0.63 0.43 0.35 

K-Neighbors Regression 0.20 0.55 0.64 0.43 

Decision tree regression 0.16 0.50 0.52 0.48 

Bayesian Ridge 0.19 0.54 0.61 0.44 

SGDRegression 0.19 0.55 0.57 0.43 

Table 6. Regression results for the APJ DB and without dimension 
reduction. 

According Table 7, applying PCA-based dimension reduction generally worsened model 
performance, except for K-Neighbors Regression, which saw slight improvements (e.g., MSE 
dropping from 0.55 to 0.53). The degradation is most severe for Decision Tree Regression, where 
MSE nearly doubled (0.50 → 0.92) and R² collapsed to 0.05, because PCA’s linear transformations 
disrupt the tree-based feature splits. Similarly, SVR and Nu-SVR suffered, possibly due to lost non-
linear feature interactions. The improvement in K-Neighbors suggests PCA may have removed 
noise, aiding its distance-based computations. The overall decline implies that PCA either 
discarded informative features or failed to preserve structures critical for regression, highlighting 
that blind dimensionality reduction can harm performance unless the model benefits from noise 
removal (like kNN). 

Regression models MAE MSE MAPE R2 

SVR 0.20 0.55 0.67 0.44 

Nu-SVR 0.19 0.64 0.53 0.34 

Linear SVR 0.21 0.57 0.82 0.41 

K-Neighbors Regression 0.18 0.53 0.60 0.45 

Decision tree regression 0.26 0.92 1.12 0.05 

Bayesian Ridge 0.20 0.56 0.72 0.42 

SGDRegression 0.21 0.55 0.76 0.42 

Table 7. Regression results for the APJ DB and with dimension reduction based on 
PCA. 

Comparing both tables show that PCA does not universally improve model performance and even 
degrades results for certain algorithms. Given this outcome, this study further evaluates t-SNE (t-
Distributed Stochastic Neighbor Embedding) as an alternative and compares results with PCA.  The 
Table 8 presents MAE and MSE values for six regression models, with performance measured after 
applying PCA and t-SNE for dimensionality reduction.  While t-SNE excels at visualization, PCA 
remains almost superior for regression tasks due to its stability, interpretability, and preservation 
of globally meaningful features. The results shows that t-SNE cannot outperform PCA in regression 
settings when it was applied to APJ DB. 
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Regression Model Metric PCA t-SNE  

SVR MAE 0.20 0.26 

SVR MSE 0.55 0.85 

Nu-SVR MAE 0.19 0.23 

Nu-SVR MSE 0.64 0.94 

Linear SVR MAE 0.21 0.28 

Linear SVR MSE 0.57 1.10 

K-Neighbors MAE 0.18 0.33 

K-Neighbors MSE 0.53 0.52 

Decision Tree  MAE 0.26 0.25 

Decision Tree  MSE 0.92 1.15 

Bayesian Ridge MAE 0.20 0.32 

Bayesian Ridge MSE 0.56 0.72 

SGDRegression MAE 0.21 0.25 

SGDRegression MSE 0.55 0.99 

Table 8. Regression results for APJ DB: PCA vs. t-SNE 
dimensionality reduction. 

Table 9 presents the regression results for the AI DB without dimension reduction. The Decision 
Tree model performs best in terms of MSE (0.86) and R² (0.12), while SVR follows closely with an 
MAE of 0.24 and R² of 0.1. Nu-SVR and Linear SVR achieve the lowest MAE (0.22), though Linear 
SVR has a slightly higher MSE (0.95). K-Neighbors Regression performs the worst, with an MSE of 
1.08 and a negative R² (-0.11), indicating poor fit. Bayesian Ridge and SGDRegression show moderate 
performance, with MAPE values ranging from 0.65 to 0.96. 

Regression models MAE MSE MAPE R2 

SVR 0.24 0.88 0.63 0.1 

Nu-SVR 0.22 0.93 0.66 0.05 

Linear SVR 0.22 0.95 0.61 0.03 

K-Neighbors Regression 0.34 1.08 1.25 -0.11 

Decision tree regression 0.22 0.86 0.79 0.12 

Bayesian Ridge 0.29 0.93 0.96 0.05 

SGDRegression 0.24 0.96 0.65 0.017 

Table 9. Regression results for the AI DB and without dimension reduction. 

In Table 10, where PCA-based dimension reduction is applied, results vary. Nu-SVR improves 
slightly, achieving the lowest MAE (0.21) and MAPE (0.55), while its MSE remains stable (0.89). 
However, Linear SVR deteriorates significantly, with MSE increasing to 0.97 and R² dropping to -
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0.004. Decision Tree regression, which performed well without PCA, now shows a higher MSE 
(1.02) and a negative R² (-0.04). K-Neighbors Regression remains poor, with nearly identical metrics 
as in Table 7. Bayesian Ridge is largely unaffected by PCA, maintaining similar MAE, MSE, and R² 
values. 

Regression models MAE MSE MAPE R2 

SVR 0.24 0.89 0.63 0.08 

Nu-SVR 0.21 0.89 0.55 0.08 

Linear SVR 0.25 0.97 0.94 -0.004 

K-Neighbors Regression 0.34 1.08 1.28 -0.11 

Decision tree regression 0.23 1.02 0.73 -0.04 

Bayesian Ridge 0.29 0.93 0.96 0.04 

SGDRegression 0.24 0.97 0.59 -0.0004 

Table 10. Regression results for the AI DB and with dimension reduction 
based on PCA. 

Tables 11 to 15 make a brief comparison of different proposed methods based on results of four 
performance metrics, including MAE, MSE, MAPE, and R2. In these tables, DR stands for dimension 
reduction. In our implementations, APJ DB has been evaluated with DR and without DR; AI DB 
follows the same rule as APJ DB with and without DR but both JI DB and PI BI have been used 
without DR. 

Regression models MAE MSE MAPE R2 

SVR 0.26 0.99 0.71 -0.023 

Nu-SVR 0.24 1.02 0.73 -0.05 

Linear SVR 0.26 0.99 0.73 -0.02 

K-Neighbors Regression 0.26 0.92 1.06 0.05 

Decision tree regression 0.23 1.02 0.71 -0.05 

Bayesian Ridge 0.31 0.97 0.94 -0.001 

SGDRegression 0.32 0.97 0.98 -0.001 

Table 8. Regression results for the JI DB and without dimension reduction. 
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Regression models MAE MSE MAPE R2 

SVR 0.11 0.21 0.29 0.78 

Nu-SVR 0.09 0.16 0.24 0.84 

Linear SVR 0.20 0.54 0.60 0.44 

K-Neighbors Regression 0.17 0.42 0.51 0.56 

Decision tree regression 0.16 0.46 0.48 0.52 

Bayesian Ridge 0.19 0.55 0.6 0.42 

SGDRegression 0.19 0.56 0.58 0.42 

Table 9. Regression results for the PI DB and without dimension reduction. 

 

Method Min (MAE) Algorithm 

AJP DB-without DR 0.1558 Nu-SVR 

AJP DB-with DR 0.1835 KNN 

AI DB-without DR 0.2150 LSVR 

AI DB-with DR 0.2088 Nu-SVR 

JI DB-without DR 0.2339 Decision Tree 

PI DB-without DR 0.0930 Nu-SVR 

Table 10. Comparing all the methods based on MAE. 

 

Method Min (MSE) Algorithm 

AJP DB-without DR 0.5020 SVR 

AJP DB-with DR 0.5300 KNN 

AI DB-without DR 0.8570 Decision Tree 

AI DB-with DR 0.8904 Nu-SVR 

JI DB-without DR 0.9200 KNN 

PI DB-without DR 0.1587 Nu-SVR 

Table 11. Comparing all the methods based on MSE. 
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Method Min (MAPE) Algorithm 

AJP DB-without DR 0.3618 Nu-SVR 

AJP DB-with DR 0.5300 Nu-SVR 

AI DB-without DR 0.6114 LSVR 

AI DB-with DR 0.5517 Nu-SVR 

JI DB-without DR 0.7158 Decision Tree 

PI DB-without DR 0.2437 Nu-SVR 

Table 12. Comparing all the methods based on MAPE. 

 

Moreover, in Tables 16 and 17, we summarized all information in tables to find out which algorithm 
leads us to the best result regarding the methods. It can be clearly seen that the dominant 
algorithm is Nu-SVR, which outperformed all the other ones, and in terms of methods, features 
included in PI DB led us to the least error rates and the most R2.  

 

Method Max (R2) Algorithm 

AJP DB-without DR 0.4828 SVR 

AJP DB-with DR 0.4545 KNN 

AI DB-without DR 0.1173 Decision Tree 

AI DB-with DR 0.0838 Nu-SVR 

JI DB-without DR 0.0533 KNN 

PI DB-without DR 0.8366 Nu-SVR 

Table 13. Comparing all the methods based on R2. 

 

Performance Metric Method Algorithm 

MAE PI DB-without DR Nu-SVR 

MSE PI DB-without DR Nu-SVR 

MAPE PI DB-without DR Nu-SVR 

R2 PI DB-without DR Nu-SVR 

Table 14. Comparing best-achieved results among all methods along 
with different performance metrics. 

 

Furthermore, Figure 5 and Figure 6 draw a wide comparison among all proposed algorithms and 
our four introduced datasets in terms of MAE and R2, respectively. 
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Figure 5. A comparison among all proposed algorithms and datasets based on MAE. 

 
Figure 6. A comparison among all proposed algorithms and datasets based on R2. 

Ultimately, we called our best model found on PI DB-without DR & Nu-SVR as PI-CCP. According 
to Tables 18, 19, and 20, the simulation results achieved based on the proposed PI-CCP modle are 
compared with the available studies presented by (Abrishami et al., 2019; Gao et al., 2024; Li et al., 
2015; Li et al., 2019). Table 18 shows that PI-CCP performs exceptionally well at minimizing errors, 
as evidenced by the remarkably low MAE. It is noteworthy that it performs better than esteemed 
models like (Li et al., 2019), demonstrating its effectiveness in generating precise forecasts. The 
significant difference with (Gao et al., 2024) emphasizes PI-CCP's superiority even more. 

Model MAE 

Proposed (PI-CCP) 0.0930 

NIPS (S. Li et al., 2019) 0.1349 

ICLR (S. Li et al., 2019) 0.1866 

(Gao et al., 2024) 7.3000 

Table 158. Achievement comparison based on MAE. 

The R2 values demonstrate how well PI-CCP captures the variation in citation counts. surpassing 
both CCP and T-CCP (Li et al., 2015), and getting near NNCP (Abrishami & Aliakbary, 2019), PI-CCP 
demonstrates its validity as a predictor, underscoring its usefulness in figuring out the influence 
of research papers (see Table 19). Besides, Table 20 shows that PI-CCP maintains remarkable 
precision in citation count predictions, while NNCP (Abrishami & Aliakbary, 2019) displays a 
reduced MSE. This ensures a balance between accuracy and reliability. As a result, PI-CCP is 
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constantly positioned as a state-of-the-art and highly accurate model for citation count prediction 
by the thorough examination across MAE, R2, and MSE. 

Model R2 

Proposed (PI-CCP) 0.83 

CCP (C.-T. Li et al., 2015) 0.53 

T-CCP (C.-T. Li et al., 2015) 0.68 

NNCP (Abrishami & Aliakbary, 2019) 0.79 

Table 169. Achievement comparison based on R2. 

 

Model MSE 

Proposed (PI-CCP) 0.158 

NNCP (Abrishami & Aliakbary, 2019) 0.034 

Table 20. Achievement comparison based on MSE. 

Conclusion and future work 
Citation count serves as crucial metrics in evaluating the impact of scientific articles and 
researchers, playing a pivotal role in scholarly and academic endeavors. The purpose of our 
research was to implement a high-accuracy citation count prediction (CCP) model based on easy 
access and available public data. As a first step, we created four datasets (AI DB, JI DB, and PI DB) 
containing twenty three proposed attributes. The data were collected from about 2000 GSPs in 
the fields of computer science and electrical engineering. The obtained results of the proposed 
model, so called PI-CCP, allows us to conclude that the features suggested in the Paper 
Information Dataset (PI DB) including 𝑇𝑇𝑊𝑊

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ,𝐶𝐶𝑚𝑚
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 ,𝐶𝐶𝑚𝑚

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿−𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 ,𝑁𝑁𝐴𝐴, and OAA are the most 
crucial variables in predicting the number of citations for scientific works. Besides, the most 
effective regression technique for forecasting citation count was determined to be the Nu-SVR 
algorithm. Achieving records such as 0.0930 for MAE and 0.8366 for R2 confirm that among all 
discussed algorithms, Nu-SVR is capable of managing the intricate, non-linear correlations 
between the input features and citation counts. Additionally, we examined APJ DB and AI DB in 
two different configurations: one with PCA/t-SNE-based dimension reduction and the other 
without them. The results showed that neither PCA nor t-SNE can consistently produce a lower 
error. Comparative analyses against existing models in the literature affirm the significant 
advancements achieved by our proposed algorithm, notably outperforming others. Our research 
not only presents the robust PI-CCP model but also contributes methodologically by offering 
insights into the selection of parameters, dataset creation, and algorithmic choices. The 
identification of crucial variables and the superior performance of Nu-SVR underscore the novelty 
and significance of our work in the domain of citation count prediction. 

Even though we introduced twenty three novel features, there may still be other potentially 
relevant variables that could not be missed. Factors such as historical citation trends (time series), 
collaboration networks, social media presence, the impact of conference versus journal 
publications, institutional and funding factors, etc. may also play significant roles in citation counts 
but were not included in our analysis. Besides, our study focuses specifically on computer science 
and electrical engineering. The findings may not be directly applicable to other fields, as citation 
behaviors can vary significantly across disciplines. Future research could explore the applicability 
of our model in different academic domains. 
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