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ABSTRACT 

Autonomous, intelligent tools are reshaping all sorts of work practices, 
including innovative design work. These tools generate outcomes with little 
or no user intervention and produce designs of unprecedented complexity 
and originality, ushering profound changes to how organizations will design 
and innovate in future. In this paper, we formulate conceptual foundations to 
analyze the impact of autonomous design tools on design work. We proceed 
in two steps. First, we conceptualize autonomous design tools as ‘rational’ 
agents which will participate in the design process. We show that such agency 
can be realized through two separate approaches of information processing: 
symbolic and connectionist. Second, we adopt control theory to unpack the 
relationships between the autonomous design tools, human actors involved 
in the design, and the environment in which the tools operate. The proposed 
conceptual framework lays a foundation for studying the new kind of 
material agency of autonomous design tools in organizational contexts. We 
illustrate the analytical value of the proposed framework by drawing on two 
examples from the development of Ubisoft’s Ghost Recon Wildlands video 
game, which relied on such tools. We conclude this essay by constructing a 
tentative research agenda for the research into autonomous design tools and 
design work. 
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1 INTRODUCTION 

Digital technologies increasingly shape the environments in which they 
operate (Baskerville, Myers, & Yoo, 2019; Rai, Constantinides, & Sarker, 
2019) by acting as “performative material devices” (Pickering, 1995). 
Performativity implies that digital technologies operate with some level of 
autonomy. Advanced forms of such technologies possess some form of 
artificial intelligence (AI). Such technologies have information processing 
capabilities for transforming some inputs into outputs in a way that can be 
deemed intelligent without close human monitoring. As a result, they have 
the genuine “capacity … to act on their own, apart from human 
intervention” (Leonardi, 2011, p. 148). Such autonomy is now evident in a 
growing array of technologies, including self-driving cars (Badue et al., 
2019), conversational agents or chatbots (Cassell, Sullivan, Churchill, & 
Prevost, 2000), Internet of Things (IoT) applications such as smart homes 
(Porter & Heppelmann, 2014), and indeed autonomous design tools 
(Shaker, Togelius, & Nelson, 2016). These technologies can, to an extent, act 
on their own with little or no human intervention and in ways that are not 
fully predictable or understandable by humans. These tools also shape their 
environment in multifaceted ways. Therefore, it is no longer appropriate to 
view these technologies as passive inert entities to be enacted by humans as 
controllable tools. 

This development has been fueled, in part, by the increased use of 
AI techniques, such as machine learning or genetic algorithms. These 
techniques have been evolving for decades in the AI community but have 
only recently become more widespread and productive in organizational 
settings (Daugherty & Wilson, 2018). The increased deployment of such 
autonomous tools has been fueled by effective access to large swaths of data 
and computing power enabled by the emergence of broadband networks, 
sensor technologies, cloud-based computing, and platform induced 
ecosystems (Parker, Van Alstyne, & Jiang, 2016; Tiwana, 2015). As a result, 
many digital applications are no longer merely passive tools that support 
or control manual tasks and related organizational processes. They are no 
longer systems that merely automate a pre-defined process and then 
‘informate’ that process (Zuboff, 1988; Seidel & Berente 2020). In addition, 
many systems can now act in ways that were previously reserved for 
human agents (Lyytinen, Nickerson, & King, 2020; Seidel, Berente, 
Lindberg, Nickerson, & Lyytinen, 2019). This shift has given rise to new 
concepts, typologies, and notions, such as machines as teammates (Seeber 
et al., 2019), human-machine-learning (Seidel, Berente, Lindberg, et al., 
2019), role-reversal (Demetis & Lee, 2017), digital agency (Ågerfalk, 2020), 
and meta-human systems (Lyytinen et al., 2020). Humans now delegate 
tasks to tools that act with autonomy (Ågerfalk, 2020; Zhang, Yoo, Lyytinen, 
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& Lindberg, forthcoming). Autonomously acting intelligent, learning 
algorithms increasingly make decisions and engage in value judgements 
(Baskerville et al., 2019). They rely on their own percepts instead of just 
executing upon prior knowledge conveyed by their designers (Russel & 
Norvig, 2016). In some situations, autonomous systems can be conceived of 
as “users” of humans, rather than the reverse (Baskerville et al., 2019; 
Demetis & Lee, 2017; Lyytinen et al., 2020). These developments call upon 
a posthumanist lens that does not identify humans as the sole sources of 
agency, but considers human and material agencies on equal footing and in 
symbiotic relationships with a circumscribed sociotechnical system (Latour, 
2005; Pickering, 1993, 1995). 

One domain that has openly embraced software with autonomous 
capabilities and epitomizes processes that have traditionally been viewed 
as human-centric is that of design. Designers across industries increasingly 
use software-based systems that make independent design decisions. In 
some cases, these systems execute entire design processes to generate 
artifacts of ever greater complexity (Seidel, Berente, Lindberg, et al., 2019). 
Such autonomous design tools employ multiple computational approaches 
to generate design artifacts, including path-finding algorithms, meta-
heuristics (in particular, evolutionary algorithms), and neural networks. 
Using such techniques, autonomous design tools can now generate a 
growing variety of multifaceted design artifacts, for instance, nearly full 
designs of next-generation computer chips (Brown & Linden, 2011; Zhang 
et al., forthcoming), user interfaces (Yumer, Asente, Mech, & Kara, 2015), 
three-dimensional virtual worlds (Smelik, Tutenel, de Kraker, & Bidarra, 
2010b), and static as well as dynamic content for video games and feature 
films (Hendrikx, Meijer, Van Der Velden, & Iosup, 2013; Togelius, 
Yannakakis, Stanley, & Browne, 2011). The applications for such systems 
are now expanding to mechanical engineering, aerospace, and architecture, 
among others.  

Empirical evidence suggests that autonomous design tools are 
fundamentally changing the organizing of innovative design work and the 
way that designers1 will generate artifacts in the future (Seidel et al., 2018; 
Zhang et al., forthcoming). Instead of creating artifacts by directly 
manipulating multifaceted design representations, designers will 
increasingly focus on selecting system goals, features, and constraints, 
deciding on related design parameters, setting values for these parameters, 
and evaluating and learning from the analysis of the tool outcomes (Seidel, 
Berente, Lindberg, et al., 2019; Seidel et al., 2018; Summerville et al., 2018). 
Design work in such environments requires designers to be mindful of the 

 
1  Note that we use the term “designer” in its broadest sense, to refer to engineers, 
developers, architects, etc., that draw on their expertise to generate solutions. 
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logic, capabilities, and limitations of the deployed algorithms and to find 
ways to make sense of and deal with complex and unanticipated outputs. 
This opens up important questions related to organizing design, including 
problems of coordination, control and learning in design teams (Puranam, 
Alexy, & Reitzig, 2014; Seidel, Berente, Lindberg, et al., 2019).  

Design automation—autonomous or otherwise—has significantly 
improved the efficiency of design across a variety of fields. One could easily 
conceive autonomous design tools simply as the next wave of automation. 
Indeed, the literature on the algorithms that generate artifacts often 
highlights the significant potential of these tools to automate design and 
introduce scale efficiencies (e.g., Smelik, Tutenel, de Kraker, & Bidarra, 
2010a; Togelius et al., 2011). This is a reasonable position—designers use the 
tools first to automate parts of current design practices by carrying out 
algorithmically specific, relatively complex pre-programmed tasks (such as 
wiring between gates in chip design). However, these tools will 
increasingly also make design decisions that are, at least partially, 
independent of and not fully knowable to the designer. In other words, the 
tools become black boxed and start acting autonomously. They carry out 
many tasks with unprecedented speed, scale, and scope so that these 
activities are likely to materially change the way designers generate artifacts 
(Summerville et al., 2018). They also exhibit capacities that fundamentally 
differ from past computer aided design (CAD) tools supporting manual 
design activities of architects and engineers (Chang & Wysk, 1997; Gupta, 
Garg, & Chadha, 1981).  

Against this backdrop we posit that the use of autonomous tools will 
continue to generate profound changes in how organizations design, 
innovate, and organize related activities. The aim of this paper, therefore, 
is to formulate a conceptual framework that facilitates future inquiries 
into how the new and changed material agency of autonomous design 
tools shapes organizational contexts, how these tools interact with their 
environment, and how their deployment is likely to lead to novel design 
processes and artifacts. To this end, we first conceptualize autonomous 
design tools a ‘rational agents’ (Russel & Norvig, 2016) with an embedded 
design model realized through two separate approaches of information 
processing: symbolic and connectionist. In a second step, we draw on 
control theory (Mesarovic, Macko, & Takahara, 1970) to spell out the 
relationships between autonomous design tools, human designers, and the 
environment in which the tools are used. At this, we highlight how the need 
for delegation as well as the frame problem (Dennett, 2006; McCarthy & 
Hayes, 1981) provide explanations for why control units such as human 
designers are necessary in typical design situations. We illustrate the 
analytic value of our model by using two examples adopted from the 
production of a complex video game software—Ubisoft’s Ghost Recon 
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Wildlands. We summarize how autonomous design tools are likely to 
change the organization of design work in many walks of design given the 
access to new types of human-machine configurations that are now 
emerging. We also note avenues for future research on autonomous design 
tools. 

2 AUTONOMOUS DESIGN TOOLS 

2.1 From Manual Design to Autonomous Design 

Design, in the most general sense of the word, involves the formulation of 
desirable future states in the world (Goel & Pirolli, 1992). To design is to 
devise “courses of action aimed at changing existing situations into 
preferred ones” (Simon, 1996, p. 111). Design is simultaneously mental and 
representational (Baxter & Berente, 2010; Gero, 1990; Goel & Pirolli, 1992). 
As result, design processes synthesize a solution by iteratively mobilizing 
and integrating diverse knowledge elements into varied representations of 
a solution. Design involves exploration and decomposition, as well as 
synthesis (Goel & Pirolli, 1992). The outcome of design is an artifact—an 
object generated by human ingenuity and meeting the goal of changing the 
given situation to a preferred one. 

We can broadly classify approaches to design by their utilization of 
technologies with increasing degrees of autonomy (Figure 1). At one end of 
the continuum one can find manual design practices where human 
designers handcraft artifacts. This does not exclude the use of tools that 
digitize these practices—drawing tools and CAD tools are prominent 
examples. Here, tools provide detailed affordances for potential actions 
(Markus & Silver, 2008; Zammuto, Griffith, Majchrzak, Dougherty, & Faraj, 
2007) that can be enacted by designers to manipulate and make sense of the 
representations. Designers are viewed as craftspeople, who, through their 
deep knowledge of materials, tools, and design principles, intentionally 
design and shape an artifact (Sennett, 2008). The notion of affordance 
describes how these tools become involved in design as they express the 
meaning and intent of the designer to use a tool feature to achieve a specific 
goal. In design situations affordances are the action potentials that the 
material properties of a tool offer to some designer or a group of designers 
(Markus & Silver, 2008). Designers enact—that is, they recurrently interact 
with the technology (Orlikowski, 2000) in their design practices by putting 
the technology to use; the enacted affordances improve the design 
performance of the designers who control the tools. 

The more technology starts making decisions on behalf of the 
designer, the more we can conceive the technology as acting autonomously. 
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If one uses technology that makes autonomous decisions, but still involves 
intermittent interactions with designers, a hybrid human-machine design 
system is formed. In such a system the degrees of interaction between 
autonomous systems and human designers will vary significantly. At a 
minimum, designers state design requirements (goals, constraints) and 
complete the design by evaluating it against set up performance goals. The 
focus is still mainly on automating a specific design task such as a 
placement, composition, or an optimization problem (Summerville et al., 
2018; Togelius et al., 2011). At the other end of the continuum we can find 
fully autonomous tools that create artifacts without a designer’s 
intervention. This is the case where a machine-learned system 
independently makes all design decisions and can even adjudicate and 
establish new design goals (Summerville et al., 2018). 

 

 

Figure 1. The continuum of human-machine design systems (extended from 
Seidel, Berente, Lindberg, et al., 2019) 

While manual design has dominated all areas of design—from arts and 
architecture, to engineering—we now see an increased deployment of 
hybrid human-design systems, where design practices involve rich and 
multifaceted interactions between designers and varied and complex tool 
sets. Systems used in design having varying degrees of autonomy have 
been discussed under multiple labels, including procedural generation 

Involvement of
 Human Designer

Autonomous Design
• Design steps are carried out 

by autonomous tool, 
independent of a human 
designer

Involvement of 
Autonomous Tools

Human-machine Design Systems

Manual Design
• Design artifact is 

handcrafted
• Human designer may 

use digital/non-digital 
tools that support 
manual activity

Hybrid Design
• Design as interaction 

of human designers 
and autonomous 
design tools

• Focus on automation 
of design steps

Example:

Neural network based on 
existing designs that creates new 
design without designer 
intervention

Example:

Search-based procedural 
generation where designers set 
input parameters and evaluate 
the outcome

Example:

Manually generating a character 
for a video game using a drawing 
tool
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(Ashlock & McGuinness, 2013; Hendrikx et al., 2013), procedural modeling 
(Müller, Wonka, Haegler, Ulmer, & Van Gool, 2006; Parish & Müller, 2001), 
computational creativity (Liapis, Yannakakis, & Togelius, 2014), generative 
design systems (Krish, 2011), and autonomous generation (Summerville et 
al., 2018). What these tools share in common is that they (partially) replace 
manual craftsmanship in that they generate design artifacts with relatively 
infrequent designer intervention to find novel solutions that meet given 
goals and constraints. In this view, autonomous design tools are machine-
based agents that perform design work alongside human agents. 
Autonomous design tools are software tools that, once started, 
independently make design decisions to generate design outcomes based 
on varied forms of input and using an embedded, often complex, 
unknown, and evolving design model.  

2.2 The Key Elements of Autonomous Design Tools 

Autonomous design tools, as defined above, are rational agents. Russel and 
Norvig (2016) describe rational agents as entities that perceive their 
environment through sensors, act upon the environment through actuators, 
and whose behavior can be described in terms of an agent function. In 
addition, there needs to be some performance measure by which the success 
of the agent’s actions can be evaluated. Rational agents act autonomously 
to the extent that they rely on their own percepts (the input they receive 
from the environment) and less on the prior knowledge of their designers 
(Russel & Norvig, 2016) 

We can thus define autonomous design tools by their inputs, their 
outputs, and, in between, the computational process underlying the specific 
design decisions the systems make. Embedded design models broadly 
determine the ways in which the tool will generate outcomes based on a set 
of input parameters (Seidel, Berente, Lindberg, et al., 2019). That is, as with 
other information technologies, these tools link inputs to outputs through 
some form of information processing. The key, however, is that this 
information processing allows the tool to generate a design outcome by 
making design decisions that are at least partially independent from human 
designers (or, more broadly, the users of the tool). From the perspective of 
the designer interacting with the tool, these outputs can also be 
unpredictable and surprising. While the designer may have a broad 
understanding of what the tool is expected to do, he or she cannot precisely 
anticipate what the tool will produce given the inputs. This is different from 
mere automation, where a given task is accomplished through a 
deterministic, traceable process and the designer knows what the output 
will be given his or her inputs. Consequently, the outcomes generated by 
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autonomous tools are often perceived as being creative by humans (Boden, 
2009; Veale, Cardoso, & y Pérez, 2019). 

Drawing on Russel and Norvig’s (2016) conceptualization of rational 
agents that have information processing capacity and interact with their 
environment by receiving sensory input and acting upon that environment, 
Figure 2 delineates an abstract model of an autonomous design tool. In this 
view, an autonomous design tool receives sensory input from the 
environment, makes design decisions based on an embedded design model, 
and then generates some output that adds content to, or alters, existing 
design content. Note that the embedded design model can be implemented 
in various ways, ranging from a simple reflex agent to a learning agent that 
involves a learning element which allows making improvements based on 
the model's interaction with the environment (Russel & Norvig, 2016). We 
next turn to two dominant approaches to implementing embedded design 
models. 

 

 

 

Figure 2. Autonomous tool interacting with its environment (adapted from 
Russel & Norvig, 2016) 

2.3 Two Dominant Types of Embedded Design Models 

There are two dominant approaches to the implementation of autonomous 
design tools—physical symbol systems and non-symbolic connectionist 
systems. They are based on two main perspectives of information 
processing (Smolensky, 1987; Sun, 1999). The first is founded on the explicit 
manipulation of symbol systems expressing the embedded design model 
based on formal logic. This approach presupposes that the features to be 
manipulated have already been identified and that consequences of its 
manipulation can be largely predicted. The second non-symbolic approach 
is founded on the implicit feature discovery facilitated by connectionist 
systems, epitomized by artificial neural networks. We can apply these two 
approaches to distinguish between two broad types of embedded design 
models (i.e., the computational models that define how the tool works) of 
autonomous design tools (Table 1). Note that the symbolic vs. non-symbolic 

Autonomous
Design Tool

Input Embedded Design 
Model

Output

Changing Environment

Existing design content Adding new design content / 
altering existing design content
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categorization is typically maintained in order to distinguish two types of 
applications in artificial intelligence (e.g. Sun, 1999). 

 
Table 1. Two types of embedded design models 

Type of embedded 

design model 

Description Autonomous design example 

Physical symbol 

system 

• Approaches based on explicit 
representations and symbolic 
programming 

• Transformation of physical 
symbols based on rules 

• The rules represent a designer’s 
understanding of how the 
autonomous design tools 
should address its design 
approach 

• Explicit representation of the 
problem space in terms of 
relevant features 

Search-based algorithms such as 
pathfinding (Pohl, 1970) in 
procedural game development 
(Togelius et al., 2011) 

 
Rule-based procedural content 
generation (Smith & Mateas, 2011) 

 
 
 

Non-symbolic/ 

connectionist 

systems 

• Implicit representation of the 
problem as the systems 
discover variables, correlations 
between variables, and 
correlations between 
correlations 

• Transformation of inputs and 
outputs through a multilayered 
network 

• The underlying 
representational model is 
opaque to the designer 

• No explicit conceptual 
foundation 

• Typically based on large data 
sets (“big data”)	

Neural network used to reduce 
complex design problems as in 
the case of designing user 
interfaces at Adobe Labs (Yumer 
et al., 2015) 

 
Adversarial networks to generate 
visual content based on models 
trained on existent designs 
(Summerville et al., 2018)  

 
Terrain design through 
adversarial neural networks 
trained on real-world terrain as 
well as their sketched 
counterparts (Guérin et al., 2017) 

 

2.3.1 The Physical Symbol Systems Approach 

The physical symbol systems approach is based on the premise that the sort 
of problem-solving associated with design work is essentially about 
transforming symbol structures until a result is reached that is satisfactory 
by some performance measures (Newell & Simon, 1972). In such situations, 
designers—human or non-human—search a large, multi-dimensional, 
potentially unbounded, problem space to identify a solution. A problem 
space is comprised of an initial state, a goal state, and a set of operators that 
allow a movement from the initial state to the goal state (Newell & Simon, 
1972). Designers need a representation of the problem space in order to 
make it possible to apply operators (Simon, 1996): “A problem 



JOURNAL OF DIGITAL SOCIAL RESEARCH — VOL. 2, NO. 3, 2020 

  135 

representation structures the problem space with elements of the problem 
and its potential solution and is the most potent explanation for if, and how, 
a design problem will be solved” (Boland, 2004, p. 106). Throughout the 
design process, the designer generates design representations that are 
tested against his or her cognitive schemata for goal satisfaction (Baxter & 
Berente, 2010). Hence, design can be understood as a search built on nested 
generate-test cycles that seeks satisfactory solutions for a given, often 
changing and fluid, design problem (Buchanan, 1992). In this view, 
optimization is possible, but only in formally constrained and well-
structured design situations such as optimal placement of logic gates on a 
relatively small semiconductor chip, where, for example, optimization 
techniques such as dynamic programming can be applied. Optimization, 
however, is a distant or impossible goal in most real-world design 
situations. The problem spaces are simply too large and complex, and the 
search takes too much time and effort. While the actual problem space 
(Dorst & Cross, 2001; Newell & Simon, 1972; Simon, 1996) might be known 
in an abstract sense (such as in chip design), it is impossible to explore all 
feasible solutions. Therefore, designers need to employ satisficing 
procedures and rely on heuristics such as means-ends analysis that involve 
recursively decomposing the problem into subcomponents until concrete 
operators can be applied to find solutions that are acceptable rather than 
optimal (Simon, 1996). Oftentimes design in complex situations adopts 
procedures that produce initial conditions for further design (Simon, 1996). 
These procedures can result in a series of component optimization and 
satisficing actions that ultimately constitute the outcome of the design 
process. 

Typical applications of this approach are based on search-based 
(Togelius et al., 2011) and rule-based (Smith & Mateas, 2011) approaches for 
generating design artifacts. Search-based algorithms generate alternative 
solutions step-by-step and evaluate them. Rule-based approaches apply a 
set of rules to derive a satisfactory outcome. Tools using these approaches 
generate large scale artifacts as these tools, upon receiving input from the 
designers, can normally undertake multiple design steps independently 
(Ashlock & McGuinness, 2013; Hendrikx et al., 2013).  

A prominent application area of these types of design tools is in the 
procedural generation of content for video games (Ashlock & McGuinness, 
2013; Hendrikx et al., 2013). Such content generation can happen at build 
time (before the game is shipped) and runtime (when the player has started 
the game). Procedural generation is, in contrast to manual content 
production, “the application of computers to generate game content, 
distinguish interesting instances among the ones generated, and select 
entertaining instances on behalf of the players” (Hendrikx et al., 2013, p. 
1:2). Recent well-known examples of the use of build-time procedural 
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content generation can be found in open-world games were users can freely 
explore a vast virtual environment. These games are based on the 
availability of large game spaces that would be prohibitively expensive to 
create without the help of systems that generate large parts of the space 
without much human designer intervention.  

2.3.2 The Connectionist Approach 

Connectionist approaches, most notably artificial neural networks, provide 
an alternative. This approach is now used in multiple fields, including 
design applications (e.g., Yumer et al., 2015). These approaches do not need 
pre-existing ontologies or features. Instead, such systems discover features 
from raw sensory data. That is, they do not need pre-existing “theories” and 
“constructs” to operate; they will discover variables, correlations between 
variables, and correlations between correlations by themselves. Neural 
networks can extend the abstraction of such processes layer-by-layer until 
higher-level constructs in data are discovered, capturing real-world 
features such as objects, words, and sentences. Because of the mechanisms 
through which such networks operate, they also are good at compressing 
information in efficient ways and reducing the dimensionality of large 
datasets. Through such reduction, design problems can be made more 
amenable for human designers to navigate a limited set of critical 
parameters. A key difference from search- or rule-based approaches, which 
generate content through searching a design space, is that these tools 
directly generate content (Summerville et al., 2018) in that the systems are 
trained on successful or representative designs and then can generate other, 
similar designs (Summerville et al., 2018). In this approach it is not 
necessary to codify explicit design knowledge in terms of search algorithms 
that can generate content and then evaluate that content; embedded design 
models based on connectionist approaches are therefore an important step 
towards increasing autonomy as they do not rely on the prior knowledge 
of their designers (Russel & Norvig, 2016).  

In the case of designing interfaces at Adobe, for instance, designers 
were confronted with a problem space that was too large for human 
designers to navigate—approximately 100 parameters controlled processes 
for generating navigation structures (Yumer et al., 2015). They turned to 
creating a deep neural network that helped them to reduce the high-
dimensional space to a three-dimensional space that designers could 
control through slider bars. The designers describe how they used a 
learning system instead of a rule-based, procedural modeling system to 
tackle the high dimensionality of the problem as follows: 

Procedural modeling systems allow users to create high quality content 
through parametric, conditional or stochastic rule sets. While such 
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approaches create an abstraction layer by freeing the user from direct 
geometry editing, the nonlinear nature and the high number of parameters 
associated with such design spaces result in arduous modeling experiences 
for non-expert users. We propose a method to enable intuitive exploration 
of such high dimensional procedural modeling spaces within a lower 
dimensional space learned through autoencoder network training (Yumer et 
al., 2015, p. 109). 

Symbolic and connectionist approaches for generating design outcomes can 
also be combined. For instance, we can conceive of search-based algorithms 
that generate outcomes but where the evaluation occurs through a trained 
neural network (Summerville et al., 2018). 

3 THE CONTEXT OF AUTONOMOUS DESIGN TOOLS: A 
CONTROL PERSPECTIVE 

The continuum from pure manual design to fully autonomous design 
highlights that autonomous design tools will operate in relation to multiple 
elements involved in the design process—human designers, autonomous 
design tools, and the environment. Fully autonomous design tools that 
define the design problem and devise solutions are a distant goal, and we 
need to consider these tools from a socio-technical perspective where 
human and machine designers interact synergistically. There are at least 
two reasons that require a human agent in such design systems. First, from 
an operational perspective, human designers delegate a design task to an 
autonomous tool, set parameters, start the autonomous design tool, and 
evaluate the outcome and make adjustments to the set of input parameters. 
Second, considering that problem spaces are evolving and that the same 
tool might be used for different design situations (and hence problem 
spaces), autonomous design tools suffer from the frame problem, which 
describes how algorithms are constrained by the rules (i.e., the knowledge) 
they currently possess and are hence incapable of reacting to environment 
states for which they are not prepared (Dennett, 2006; McCarthy & Hayes, 
1981; Salovaara, Lyytinen, & Penttinen, 2019). In the case of symbolic 
approaches, the frame problem would demand that rules are added to the 
embedded design model to make it applicable to a broader or changing set 
of design problems (Dennett, 2006). However, even if we assume that we 
can infinitely add rules, such approach will increase the system’s 
complexity and render its performance useless. While connectionist 
approaches involve learning, they still suffer from the frame problem as 
they are typically solving “closed-world” problems and remain constrained 
by the specific goal functions and available data (Salovaara et al., 2019). 

Therefore, in this section, we turn to the interaction between 
autonomous design tools and their control units, most notably human 
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designers, in relation to the environment in which they operate. We apply 
a control perspective (Mesarovic et al., 1970) to express the morphology of 
autonomous design tools. Figure 3, which is an extension of Figure 2, 
highlights the principal relationships of an autonomous design tool with its 
control system and environment.  

 

 

 

Figure 3. Control system, (partially) autonomous design tool, and the changing 
environment 

The environment embodies the material and social context within which 
the design system as a whole operates and with which it interacts. It is likely 
to be changed through the use of the autonomous tool and its outcomes. 
The tool’s input function refers to the interfaces through which the tool 
receives information about the environment. The embedded design model 
refers to the procedures followed to process information from the inputs, 
implemented through symbolic approaches, connectionist approaches, or a 
combination of such approaches. The output function represents the 
mechanisms through with the system effectuates the results of this process 
on the environment. An autonomous design tool is never entirely 
independent and its environment involves a second system—a control 
system—which triggers the autonomous design tool, monitors and 
evaluates its performance, and may even change the embedded design 
model in order to react to alterations in the problem space, thereby 
addressing the frame problem. On this view, model evolution can result 
from both the model’s ability to learn and the intervention of the control 
unit changing the embedded design model (Seidel, Berente, Lindberg, et al., 
2019). We describe the three components—control system, the autonomous 
design tool itself, and the environment—in what follows. 

The human designer or design team, as a control system, involves 
three aspects: sensors, processors, and regulators. Sensors involve the 
designer’s or design team’s perception of the output of the autonomous 

Autonomous
Design Tool

Control System (typically: human designer)

Input Embedded Design 
Model

Output

Changing Environment

ProcessorRegulator

Setting 
parameters

Existing design content
Adding new design content / 
altering existing design content

Evaluating new design content /
Evaluating altered design content

Evaluating new
design content /
evaluating altered
design content

Sensors

Changing embedded
design model
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tool. Of note is that while current applications typically involve human 
designers who work together with tools to create content (Seidel et al., 2018; 
Smelik et al., 2010a; Summerville et al., 2018) we can also think of non-
human control systems and even autonomous design tools as control 
systems. However, as indicated earlier, addressing the frame problem will 
eventually require a human agent who is able to change the model to react 
to changes in the problem space. This creates a hierarchy of nested systems 
of human designers and autonomous design tools. This can involve the 
monitoring of performance measures applied to the design alternatives. 
Processing involves the interpretation and analysis of that sensory 
information to assess adequacy and the degree to which design preferences 
have been met. Regulators are the ways that designers change conditions of 
design activity. This could include modifying parameters or changing the 
design of the system as well as modifying or implementing a new 
algorithm.  

The autonomous design tools receive sensory input through two 
channels: (1) through parameters specified by the designers programming 
or guiding the tool, that is, through the regulating component of the control 
system; (2) through input they receive from their interactions with the 
environment. Systems that are based on the symbol system approach, for 
instance, transform one symbol structure (e.g., an already existent 
representation of the design artifact) into another symbol structure (i.e., the 
new representation of the design artifact). The tool can make multiple 
design decisions without the intervention of the control unit. Eventually, 
however, some result will be evaluated by the control unit which may lead 
to new input and additional iterative cycles of deploying the tool. We 
describe the impact of an autonomous design tool on its environment in 
terms of the tool’s output function. This design outcome might be a stand-
alone artifact (e.g., a layout of a semi-conductor chip) or embedded artifact 
(e.g., modifications to a landscape in a video game, for instance, through 
adding a road network).  

Finally, the environment is the context in which the autonomous tool 
operates and which it changes. The environment provides sensory inputs 
to the autonomous design tool. A search-based algorithm might receive a 
three-dimensional landscape as input and then generate alterations of this 
landscape until the process terminates with a satisfactory solution (Seidel 
et al., 2018). Similarly, a machine-learned model might be fed with a partial 
design and then complete that design (Summerville et al., 2018). Ultimately, 
whether or not the design outcome is satisfactory depends on how well it 
performs in the environment in which it is deployed. The environment can 
include both social (e.g., human stakeholders who have a say in whether an 
artifact meets the expectations) and technical (e.g., requirements of other 
components when designing more complex systems) elements. Table 2 
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provides an overview of how autonomous design tools, through their input 
and output functions, interact with control systems as well as the 
environment. 

 
Table 2. Key components of autonomous design tools and their 
relationships to control systems and the environment 

Component Definition Example 
Input function 
(sensory) 

 

Autonomous design tools receive input  
• from	the	designer	guiding	the	

autonomous	tool	(i.e.,	the	regulating	
component	of	the	control	system)	
and	

• from	the	design	environment.	

 

The designer of a 
semiconductor chip sets 
parameters such as 
component parameters, 
physical parameters, and 
electrical parameters. 

Embedded design 
model 

The embedded design model—the 
algorithms and data models—determine 
how the tool designs; variants include: 

• models based on physical 
symbolic systems; 

• machine-learned models based 
using non-symbolic systems; 

• hybrids. 

Can range from heuristics 
to machine-learned 
algorithms and may even 
involve a number of 
cooperating algorithms 

Output function 
(actions) 

 

The output function describes the actual 
actions that the tools takes with regards to 
its environment. 

 
The output function together with the 
embedded design model represent the 
actuating element of the autonomous tool 
as a goal-seeking system. 

Autonomous design tools 
generate artifacts or change 
existing artifacts, for 
instance, the layout of a 
semiconductor chip. 

 
Based on this conceptualization, we can further identify three key 
dimensions to characterize autonomous design tools: autonomy, 
interactivity, and understandability. First, the extent to which the 
autonomous tool requires pre-defined rules (either built-in or set by the 
control system such as a human designer) defines the level of autonomy. 
As indicated earlier, the less design tools depend on the prior knowledge of 
their designers (Russel & Norvig, 2016) the more autonomous they are. 

Second, we can distinguish two types of interactivity: interactivity 
with the control system and interactivity with the environment. The more 
input is required from the regulator as part of the control system, the more 
interactive the design process is in terms of control-system-autonomous-
tool interaction. Moreover, the autonomous tool may receive sensory input 
from the changing environment; the more input the tool receives from the 
environment that informs its course of action the more interactive the 
design process is in terms of tool-environment interaction. 
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Third, from the viewpoint of the human designer acting as the control 
unit, autonomous tools can exhibit different levels of understandability—
while the functioning of a pathfinding algorithm for generating road 
networks may be relatively easily comprehended (and thus how the tool 
generated a result), this will be different in the case of neural networks 
training an artificial intelligence—reflecting recent discussions on 
explainability of artificial intelligence (Miller, 2018; Samek, Wiegand, & 
Müller, 2017).  

Table 3 provides an overview these properties. 
 

Table 3. Key properties of designer-autonomous-design-tools-systems 

Property Description Example 
Level of autonomy Autonomous tools can rely on inputs 

provided by the designers (e.g., 
parameters) as well as information 
they receive from their interaction 
with the environment, i.e., with the 
problem space.  

 

Chip design tools generate 
entire sections of a chip 
without direct intervention of 
the human designer. 

Level of interactivity While autonomous design tools can 
perform design activities with little to 
no user intervention, this does not 
mean that they operate in isolation. 
There are two types of interactivity: 
(1) Interactivity	with	the	

environment:	the	tool	receives	
sensory	input	from	the	
environment	and	acts	upon	this	
input,	in	turn	changing	the	
environment	and	generating	new	
sensory	input.	

(2) Interactivity	with	the	control	
system:	The	tool	receives	input	
from	the	control	system,	be	it	a	
human	designer	or	another	tool.	

	

The designer in the production 
of an asset (e.g., a landscape) 
for a video game monitors the 
process of the autonomous tool 
and, based on intermediate 
results, changes input 
parameters. 

Level of 
understandability  

The embedded design model of an 
autonomous design tool might be 
more or less easy to understand for 
the designer—or might be very 
complex. 

 

Semiconductor chip designers 
cannot predict how the tool 
will layout components and 
also cannot always make sense 
of why particular design 
decisions were made by the 
tool. 
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4 ILLUSTRATIVE EXAMPLES: CONTENT GENERATION IN 
VIDEO GAMES 

Autonomous design tools are now widely used to produce content for a 
new generation of video games. Current tools focus on procedural 
generation and mainly rely on symbolic approaches to identifying 
satisficing solutions. However, there are also some examples of learning 
algorithms, for instance: algorithms for terrain generation are trained on 
real-world terrains (Guérin et al., 2017). While tools make design decisions 
independently from the human designer, there is still significant interaction 
with human designers (Seidel, Berente, Lindberg, et al., 2019). Such 
algorithmically generated content can include a variety of game elements—
including textures, buildings, road networks, etc. Designers typically 
combine these elements with specific hand-crafted elements. The interplay 
of automated and manual generation of content is crucial as humans are 
looking for rich and unique experiences, and undirected automated 
generation might lead to results that are not perceived as being authentic.  

Ubisoft’s Ghost Recon Wildlands, an action adventure game, is a recent 
example where designers used autonomous tools to generate large parts of 
the game space (Seidel, Berente, Lindberg, et al., 2019). Guided by human 
designers, algorithms procedurally generated much of the background 
content, and designers then tweaked what algorithms created and further 
handcrafted elements in the game space. In this process the tools would, for 
instance, generate large amounts of a detailed terrain. Then the designers 
would modify the terrain further and add extra detail. Some areas of the 
game space were still generated in a manual fashion. This combined process 
required developing and selecting appropriate tools and models that would 
align with the core concepts of the game as specified by a team of designers 
and developers. Next, we consider two examples from Ghost Recon 
Wildlands and interpret these examples through our conceptual lens. 

The first example is the generation of a road network using a 
pathfinding algorithm. 2  The path finding algorithm transforms a data 
structure (a landscape without a road) into a different data structure (a 
landscape with a road). While the road itself is generated by the algorithm, 
this case is still characterized by interaction between the human designer—
who acts as a control system—and the autonomous design tool. The human 
designer sets parameters (such as start and end points), runs the system, 
evaluates the outcome, and runs the tool again, until there is a satisfactory 
result. Importantly human designers are also involved in developing and 
selecting the specific algorithm and hence the design model embedded in 
the tool. Figure 4 highlights how different algorithms produce quite 

 
2 The process described here was inspired by Galin, Peytavie, Guérin, and Beneš (2011). 
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different designs. This illustrates how the selection of the algorithm—and 
hence the model embedded in the tool—is essential for the design outcome. 
Notably, this design outcome provides key input for further design steps 
which again involve the use of autonomous design tools, including for the 
generation of fences, crash barriers, traffic signs, road markings, specific 
types of grass or rocks on the roadside, powerlines along roads, etc. This 
indicates how the design outcomes generated by autonomous design tools 
fundamentally impact on the design process, including subsequent design 
decisions that both other autonomous design tools and human designers 
make. 

 

  

Figure 4. Generation of a road network using different algorithms (Source: Ubisoft) 

In this example, all key components of an autonomous design tool and their 
context are present (Table 4). First, the tool receives sensory input (the 
topology of the map). Second, the tool computes a solution, in this case 
using a search-based algorithm, without much user intervention. Third, the 
tool acts upon the environment by adding the road network to the 
landscape, thereby altering the design artifact. Figure 5 shows an example 
of the output. 
 

 

Figure 5. Autonomously generated road (Source: Ubisoft) 
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Table 4. Example: Generation of a road network in a videogame 

Component Example 
Control system The control system is a human designer using the tool to 

generate roads/a road network for a video game. 
 

The tool is executed by the designer and then evaluated 
by the human designer. 

 
The human designer must thus possess knowledge of the 
underlying embedded design model to anticipate what 
the algorithm does. 

 
Autonomous 
design tool 

Input function 
 

Designer’s specification in terms of start and end points 
 

Existing design content in terms of the landscape in 
which the road network is placed, e.g., the road can only 
have a certain incline otherwise an alternative path needs 
to be taken 

Embedded 
design model 

Pathfinding algorithm 
 

The design tool searches the problem space by devising 
design alternatives 

 
Output function 

 
Coordinates of the road network that fit to the landscape 

 
Alteration of design artifact, resulting in a landscape with 
road network 

Environment Altered design artifact: roads connecting start and end-
points in the game space 

 
Our second example, the generation of villages in the game space, allows 
us to further highlight how autonomous design tools and human designers 
interact (Figure 6).3  This process starts with key decisions made by the 
human designer, including the identification of a center point for a 
village/town and the identification of related areas. These are key decisions 
that impact the road pattern within the town, and we can describe this 
process as a form of “architectural structuring” (Seidel, Berente, & Gibbs, 
2019). The actual buildings are then placed by a self-aware packing 
algorithm. This process unfolds without human intervention and is based 
on building definitions, each of which has their own placement rules. Still, 
human designers have at their disposal tools to tweak what the algorithm 
has designed. The key is that placing the buildings involves design 
decisions that are made by a tool. Figure 6 displays the definition of a center 
for a village (I), the definition of the village boundaries (II), the definition of 
internal paths and zones (III), and the process of placing buildings (IV)—it 
is this stage where the design tool takes over. 

 
3 The process described here was inspired by Emilien, Bernhardt, Peytavie, Cani, and Galin 
(2012). 
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I 

 

II 

 

III 

 

IV 

 

Figure 6. Steps in generating villages using a self-aware packing algorithm 
(Source: Ubisoft) 

In this case all elements of autonomous design tools are present. The human 
designer acts as the control system and provides key inputs to the tool—
such as the identification of areas to focus on. The autonomous design tool 
has an embedded design model in terms of a self-aware packing algorithm 
and the tool generates output that alters the environment in which the tool 
operates. Table 5 provides an overview and Figure 7 shows an example of 
a village generated using this approach. 
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Figure 7. Village generated through interaction of human designer and autonomous 
design tools (Source: Ubisoft) 

Table 5. Example: generation of villages in a videogame 

Component Example 
Control system The control system is a human designer who makes key 

architectural decisions: 
• Location	of	the	village	
• Type	of	pattern	(radial	or	square)	
• Internal	road	structure	
• Zoning	
• Decision	on	the	buildings	to	use,	including	

placement	definitions	for	each	building	
 

Each step is manually triggered so the user can visually 
validate the result before adjusting parameter of the 
current step or move to the next one. 

 
The human designer must thus possess knowledge of the 
underlying embedded design models to anticipate what 
the algorithms do. 

Autonomous 
design tool 

Input function 
 

The center point of the village and boundaries 
 
A specific set of parameters for the different functions can 
be saved as a preset and reused elsewhere. 

 
Producing a different (for a different location) but 
predictable result in term of pattern and layout 

Embedded 
design model 

Space partitioning 
  

Pathfinding 
 

Self-aware recursive packing algorithm 
Output function 

 
Alteration of design artifact, resulting in a terraformed 
landscape with the village footprint 
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Trajectories representing internal roads and paths that are 
used for further detailing through placing objects 
(lamppost, signs, etc.) on roadside 

 
3d models of buildings 

Environment Altered design artifact: villages with dedicated center, 
roads, and other elements are added to the game space 

 
With regards to the key properties of autonomy, interactivity, and 
understandability the two examples are comparable. First, the tools in these 
examples make design decisions on behalf of their designers, who however 
still have to provide user input. They can thus be described as being 
partially autonomous. There is interactivity as after setting parameters and 
running the tools again, the designers may still alter the resulting artifacts. 
This interactivity becomes particularly visible in the staged process of 
designing villages that moves from identifying a location to the actual 
placement of buildings and that involves interdependent designer and tool 
decisions. Finally, the embedded design models—such as the pathfinding 
algorithm and the self-aware packing algorithm—are quite understandable 
for the designers who use these tools. 

5 DISCUSSION: A RESEARCH AGENDA FOR AUTONOMOUS 
DESIGN TOOLS AND CHANGING DESIGN WORK 

Our key intention with this article is to provide a conceptual framework for 
studying the interactions between human and machine components in 
design systems that involve autonomous design tools, and therefore 
enabling theorizing of the materiality of autonomous design tools in 
relation to the organizing of design work. The literature on autonomous 
design tools (such as procedural generation) has so far largely focused on 
the technical aspects of implementing these approaches. Still, some scholars 
have indicated that these tools need to be considered in concert with the 
human designers employing such tools (Seidel, Berente, Lindberg, et al., 
2019; Smelik et al., 2010b; Summerville et al., 2018). Hence, a socio-technical 
perspective on design tools becomes increasingly important as scholars 
have started to revisit expanded notions of material agency in the presence 
of increasingly autonomous and intelligent systems by using labels such as 
human-machine-learning (Seidel, Berente, Lindberg, et al., 2019), role-
reversal (Demetis & Lee, 2017), digital agency (Ågerfalk, 2020), or meta-
human systems (Lyytinen et al., 2020). Our conceptualization of 
autonomous design tools based on a rational agent perspective and control 
theory highlights how designing with autonomous tools is a process that is 
co-constituted by the activities of human designers and the design activities 
carried out by autonomous design tools. We have suggested that human 
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designers act as control systems that “coach” autonomous design tools 
which act in a partially independent fashion in the sense that they make 
design decisions that cannot necessarily be anticipated by the human 
designers running the tools. However, despite increasing levels of system 
autonomy, humans still play a pivotal role as a control unit for the 
autonomous design tool.  

The autonomous design tools we have discussed in this paper are 
tools designed for specific tasks. When Newell, Shaw, and Simon described 
their general problem solver (Newell, Shaw, & Simon, 1959), they conceived 
of a more general approach of computational problem solving based on the 
use of general heuristics of means-end-analysis and planning. Such a 
general approach to design still seems to be a distant goal. However, we 
have highlighted some developments in this direction such as using 
adversarial neural networks (Guérin et al., 2017) that foreshadow a 
development towards more flexible autonomous design tools. Following 
from this analysis of specificity and generality of tools, one key question is 
about the extent to which we can expect to find regularities in the way 
designers and machines interact when carrying out different tasks, and 
hence about the limits of theories about these new forms of human-machine 
interaction. 

Against this background, autonomous design tools pose a variety of 
novel research challenges that recognize the socio-technical nature of 
designing with such tools. Here, we categorize these challenges into four 
areas to offer a systematic research agenda that can encourage 
interdisciplinary research teams to pursue fruitful and innovative research 
programs in this nascent field (Table 6). 

 
Table 6. Research agenda 

Phenomenon /  
level of analysis 

Example research questions 

Designer-autonomous-tool-
interaction 

How do humans and autonomous design tools interact 
effectively in design processes? 

 
How can the outcomes of using autonomous design tools be 
evaluated under different conditions; how to address the 
cognitive overload of human designers? 

 
How does learning take place when humans and autonomous 
tools interact? What forms of interaction and processes lead to 
better learning outcomes and design outcomes? How is such 
hybrid learning different from pure cognitive models of 
experiential learning or crafting? 

 
How do designers work with different types of embedded 
design models? What are the differences between interacting 
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with design systems that are based on symbolic approaches 
versus those that are based on connectionist approaches? 

Organizing design work with 
autonomous tools 

How do autonomous design tools change designer roles, 
interactions, design principles, and organizing? 

 
How do key organizational processes such as decision making 
and sensemaking unfold in situations where human designers 
interact with autonomous design tools? 

 
How do organizational practices evolve as autonomous tools 
are introduced to design settings? 

 
Do organizational tasks or domains matter for how 
autonomous design tools are used and integrated?  

Autonomous tools and 
markets/crowds/communities 

How does the use of autonomous design tools change labor 
markets? 

 
Can autonomous design tools emerge as market-based agents 
that carry out specific design tasks and be offered as a service? 

Ethical considerations of 
using autonomous design 
tools 

What are the ethical dimensions and implications of using 
autonomous design tools? 

 
Are there regulatory issues related to recording and justifying 
design decisions and outcomes carried out by autonomous 
tools? 

5.1 Designer-Autonomous Tool-Interaction 

One important aspect that differentiates autonomous design tools from 
other types of software systems is that they generate outcomes where the 
human designer often cannot foresee the specifics of the outcome (Seidel, 
Berente, & Gibbs, 2019; Zhang et al., forthcoming). This is possible because 
these tools act autonomously as they move through the process of 
generating or altering an artifact while making invisible design decisions 
that do not depend on their designer’s (the one who designed the tool) prior 
knowledge of the design task as they go. Still, the designer makes initial 
assumptions about the design setting and goals (choosing tools, choosing 
parameters, setting parameters). This then yields contextual information 
(mostly about the design artifacts) which helps this designer to further 
guide the tool. Autonomous tools, through their independent design 
decisions, generate information that informs computations going forward, 
as well as the designer’s subsequent actions.  

These observations indicate that we need to attend to the specific ways 
in which designers and tools engage with each other. It seems warranted to 
move our attention from the idea of designers enacting technology to 
processes of mutual enactment, where human activity and machine activity 
constitute each other in situ. However, as contemporary design tools such 
as those used in video game production still require designer input, we can 
ascribe a certain head status to the human designer (Leonardi, 2011). Still, 
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we can conceive of a future where the boundaries of control and controlled 
will increasingly vanish, perhaps requiring a more symmetrical 
conceptualization of the relationship between control and controlled. There 
is no reason to believe that control in human-machine design systems could 
not reside in a machine or could be shared among human designers and 
autonomous design tools. The move from “technology enactment” to 
“mutual enactment” requires us to explore the specific ways designers 
interact with their tools and how they do so effectively. Moreover, we can 
expect that there will be new challenges in evaluating the outcomes 
generated by tools as well as through the interaction of designers and tools. 
Finally, it will be interesting to see how the nature of the embedded design 
model (symbolic versus connectionist or any combination) impacts on the 
interaction between human designers and tools. 

5.2 Organizing Design Work with Autonomous Tools 

It is likely that the increased use of autonomous design tools will involve 
moving away from an understanding of the designer as a craftsman 
(Sennett, 2008), towards being a tool chauffer. Designers increasingly need 
to develop a generalized understanding of the design problem as well as 
the envisioned solution so that they can think about appropriate strategies 
to generate design outcomes (which manifests in the selection and 
configuration of tools, including the selection of the embedded design 
model), instead of actively generating the design artifact through dedicated, 
manual design activities where each step is evaluated against the design 
goal. This requires us to rethink the way that we conceive of the institutional 
role of a designer, as it has potential implications for the way that education 
and learning will change across fields of practice.  

In light of this changing role of the designer in relation to their 
materials and tools, it will further be important to explore if and how key 
organizational processes such as decision making related to participating 
or producing (March & Simon, 1993) as well as sensemaking (Weick, 1995; 
Weick, Sutcliffe, & Obstfeld, 2005) change in situations where autonomous 
tools become part of the fabric of organizing. Sensemaking, for instance, has 
been conceptualized as a retrospective process where not only cognition 
impacts action but where action impacts cognition (Weick, 2001)—but what 
does it mean for human cognition if this action is performed on their behalf 
by a machine with potentially unpredictable outcomes? 

Finally, organizations want to understand the specific outcomes 
generated by autonomous design tools and how they fit into the overall 
product and service portfolio. While autonomous design tools promise to 
offload repetitive work from designers and quickly generate design 
artifacts of unprecedented scale with comparably little resources, it is also 
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clear that these tools have limitations. While their output is complex and 
often unanticipated, they are still largely deterministic systems. The 
question arises to which extent these tools can indeed be creative in the 
sense that they generate truly novel artifacts; there is a risk that the tools 
will generate repetitive, perhaps boring (Backus, 2017) and non-creative 
content. Still, it seems reasonable to make two claims regarding the 
creativity involved while using these tools. First, if we conceive of 
autonomous design tools as part of a socio-technical design system where 
two components (humans and machines) interact, and where the output of 
each element impacts the action of the other, the overall system acts 
creatively, if it generates outcomes that are both novel and useful (Amabile, 
1996) and that would not have been produced without such interactions. 
Second, the outcomes that are generated by the types of autonomous design 
tools we described in this paper exhibit a complexity that makes them 
unpredictable, and thus potentially novel, from the designers’ point of view 
(Seidel, Berente, & Gibbs, 2019). 

5.3 Autonomous Tools and Markets/Crowds/Communities 

The described changes in the way humans and machines interact as well as 
in the way we organize for work can be seen as micro foundations for 
broader level changes at multiple levels of analysis. We may, for instance, 
expect that the labor market will, going forward, require different designer 
skills. Specifically, designers will require in-depth knowledge about how to 
select, orchestrate, and run autonomous design tools. Moreover, software 
development skills will be important for designers as they seek to 
understand and perhaps alter the models embedded in autonomous design 
tools. 

Moreover, it will be interesting to see to what extent autonomous 
design tools will not only be used to create products, but also function as 
market-based agents that offer services. In the past, software-as-a-service 
and related concepts have mainly focused on providing capabilities such as 
for data storage and process automation. If autonomous design tools 
become market-based agents that carry out design tasks on behalf of a 
customer, organizations will rely on external stakeholders to perform 
design work. This bears the potential for disrupting a variety of industries, 
as the generation and implementation of purposeful design outcomes is a 
key source of value generation in many contemporary organizations. What, 
however, would the consequences be if such tasks could be performed at 
higher speed, higher scale, and perhaps decreased cost by an external 
provider? 
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5.4 Ethical Considerations of Using Autonomous Design Tools 

Finally, we have to attend to the ethical dimensions and implications of 
using autonomous design tools. For instance, these tools deeply penetrate 
into the types of work that have traditionally be seen to be reserved for 
humans—work that is related to creativity and design. We can thus expect 
that these tools will challenge established role identities of designers and 
related professions and that may even lead to situations where designers 
feel threatened by that technology (Seeber et al., 2020). Following from this 
observation, it is crucial to explore the pertinent regulatory issues related to 
recording and justifying design decisions and outcomes carried out by 
autonomous tools. This involves questions with regards to the intellectual 
property that is generated by autonomous design tools as well as the 
consequences of using such intellectual property. 

6 CONCLUSION  

In this paper we have discussed the conceptual foundations of autonomous 
design tools. These foundations prepare the ground to study how these 
tools are involved in socio-technical systems and how they change how we 
organize design work. To this end, we have highlighted how designers 
currently have tools at their disposal that range from tools which provide 
limited support for manual tasks, to design tools which are fully 
autonomous. Moreover, we have argued that the idea of fully autonomous 
design tools remains an abstraction; the practical examples we have 
identified in areas such as the design of video games, which formed the 
baseline example in this paper, rely on the interaction of human designers 
and tools. We also distinguished two general approaches to building 
autonomous design tools (physical symbol systems and connectionist 
systems) and we have highlighted how there is now a nascent interest in 
tools that learn from interactions with their environment, thus moving us 
closer to the vision of fully autonomous design tools. 

After having experienced two AI winters, AI and associated design 
systems are finally flourishing. These developments have been driven by 
vast amounts of available data upon which machine learning algorithms 
are capitalizing, as well as the emergence of cloud-based computing 
infrastructures that provide the necessary fuel, the computing power 
necessary to explore vast design spaces. The emergence of these 
technologies heralds a possible revolution in how we think about design 
across multiple domains. It is therefore incumbent on us to seek to 
thoroughly understand this new breed of tools and the consequences of 
their usage. 
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