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Uncontrolled hemorrhagic shock is responsible for 40% of deaths among those under the age of 35, making it the 
primary cause of mortality in this age group. An optimal fluid therapy strategy can restore tissue perfusion and oxy-
genation in trauma patients. However, excessive fluid resuscitation can result in glycocalyx shedding, which leads to 
globally increased permeability syndrome, leading to complications such as changes in tissue perfusion, abdominal 
compartment syndrome, and respiratory distress syndrome. Permissive hypotension is a resuscitation strategy that 
aims to maintain systolic blood pressure below the normal threshold. Restricted volume replacement or restricted 
fluid resuscitation is a resuscitation principle that limits the amount of fluid used to prevent the worsening of diluted 
coagulopathy, hypothermia, and acidosis. This review article aims to discuss the recent concept of fluid therapy in 
trauma and to connect the understanding of fluid therapy in trauma with related topics such as trauma-induced 
coagulopathy and damage control resuscitation.
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INTRODUCTION

Uncontrolled hemorrhagic shock is responsible for 40% 
of deaths among those under the age of 35, making it 
the primary cause of mortality in this age group [1,2]. 
Fluid resuscitation is the initial step in the treatment of 
catastrophic hemorrhagic shock, aimed at restoring the 
hemodynamics [3].

The metabolic response to trauma can be categorized 
into three distinct phases: the ebb phase, characterized 
by a drop in metabolic rate during the first shock period; 

the flow phase, also known as the catabolic phase; and 
the anabolic phase [4]. Certain patients are unable to 
naturally progress through the “flow” phase and instead 
experience a chronic condition of globally increased 
permeability syndrome with ongoing fluid accumulation 
[5]. Globally increased permeability syndrome refers to 
a condition characterized by an excessive accumulation 
of fluid in the body, which is accompanied by the sud-
den failure of one or more organs. This condition is also 
known as “the third hit of shock” [6].

Death can occur in both the acute and subacute 
phases after hemorrhagic shock. In the acute phase, the 
inability to control bleeding can lead to the heart’s fail-
ure to maintain the minimum cardiac output, resulting in 
death. During the subacute phase, resuscitation and sur-
gical interventions successfully stop the bleeding, allow-
ing for sufficient blood supply to the brain and heart. 
However, the bulid-up of ischemia eventually leads to 
fatal consequences within a matter of days, weeks, or 
months because of multiple organ failure [7].

Previously, aggressive fluid resuscitation was a fre-
quently employed approach to revive trauma victims [8]. 
Recent investigations have demonstrated that employ-
ing the principles of permissive hypotension and limiting 
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volume yields superior outcomes. This article reviews the 
concept of permissive hypotension and restricted volume 
in fluid management for trauma.

PERMISSIVE HYPOTENSION AND RESTRICTED 

VOLUME RESUSCITATION

Permissive hypotension is a resuscitation approach that 
seeks to keep the systolic blood pressure (SBP) below 
the usual threshold. This approach is also referred to as 
“hypotensive resuscitation,” “controlled resuscitation,” 
and “balanced resuscitation.” Restricted volume replace-
ment, also known as restricted fluid resuscitation, is a 
resuscitation strategy that aims to limit the quantity of 
fluid administered in order to prevent the exacerbation 
of diluted coagulopathy, hypothermia, and acidosis. The 
approach to managing hypotension caused by trauma 
by restricted volume replenishment or permissive hypo-
tension was initially influenced by a study conducted 
by Bickell et al. in 1994 [9]. The study conducted at 
a single facility examined the effects of immediate and 
delayed fluid resuscitation in patients with low blood 
pressure (≤90 mm Hg) caused by penetrating injuries 
to the torso. The study found that delaying vigorous 
fluid resuscitation until surgical intervention resulted in 
significantly greater survival rates (70% vs. 62%; p = 
0.04) [9]. In 2015, Schreiber et al. found that in blunt 
trauma patients the use of 1 liter of crystalloid resulted 
in a 24-hour mortality rate of 3%, whereas the use of  
2 liters of crystalloid resulted in a mortality rate of 18% 
[10]. In 2016, Carrick et al. [11] compared the out-
comes of trauma-penetrating patients using minimum 
mean arterial pressure (MAP) targets of 50 mm Hg and  
60 mm Hg. The study found that hypotensive resusci-
tation with MAP targets of 50 mm Hg resulted in sig-
nificantly lower 30-day mortality rates [11]. Similar 
results were also reported by Morisson et al. in 2011; 
the trauma patients using the 50 mmHg MAP target 
had significantly better 30-day morbidity and mortal-
ity rates and required fewer blood products than those 
using the 65 mm Hg MAP target [12].

At present, multiple systematic review studies and 
meta-analyses demonstrate the benefits of employing the 
notion of permissive hypotension resuscitation [13–16]. 
In 2018, Owattanapanich et al. [14] discovered that 
hypotensive resuscitation results in reduced quantities of 
fluid resuscitation and packed red cell transfusion, along 
with a decreased occurrence of acute respiratory distress 
syndrome and multiple organ failure. The study also 
concluded that there was no notable disparity in resus-
citation techniques in terms of the occurrence of acute 
renal damage [14]. According to the study by Albreiki 
and Voegeli in 2017, low-volume resuscitation resulted 
in a lower death rate than big-volume resuscitation, with 
values of 21.5% and 28.6%, respectively [17].

A meta-analysis conducted by Safienjko et al. in 
2022 demonstrated that the use of hypotension fluid 

resuscitation is associated with reduced mortality and 
comorbidities [15]. Among the twenty-eight studies 
analyzed, the mortality rate for hypotension fluid resus-
citation was found to be 12.5%, but for traditional fluid 
resuscitation it was 21.4%. The incidence of complica-
tions with hypotension fluid resuscitation is 10.8%, 
but in traditional resuscitation it is 13.4%. The pri-
mary distinction in the risk of complications between 
hypotensive and conventional fluid resuscitation is in 
the occurrence of acute respiratory distress syndrome 
(ARDS), with rates of 7.8% and 16.8%, respectively, as 
well as multiple organ damage syndrome (MODS), with 
rates of 8.6% and 21.6%, respectively.

The effectiveness of limited volume replacement in 
trauma was also documented in pediatric instances. In 
a study conducted by Mbadiwe et al. in 2021, it was 
found that administering resuscitation fluid of more 
than 20 cm3/kg in cases of pediatric trauma is linked 
to higher fatality rates. This association is determined 
by the dosage, meaning that the higher the dosage, the 
more significant the impact on mortality [17].

Permissive hypotension and restricted volume replace-
ment are not recommended for patients with severe 
brain damage and spinal cord injury. This concerns 
the ideal concentration of blood flow required to guar-
antee sufficient oxygen supply to the impaired central 
nervous system. Stable fluid infusions above 80 mm Hg  
are recommended for severe cerebral hemorrhagic 
damage that raises intracranial pressure. This prevents 
arterial ischemia and maintains cerebral perfusion pres-
sure at 60 mm Hg [18]. Revised guidelines have been 
issued for the management of SBP in adult patients with 
traumatic brain injury (TBI), taking into account their 
age. The age-based guidelines set by the Brain Trauma 
Foundation exceed the acceptable thresholds for hypo-
tension. The recommended blood pressure levels for 
those aged 15 to 49 are 110  mm Hg, for those aged 
50 to 69 they are 100 mm Hg, and for patients aged  
70 years and above they are 110  mm Hg [19,20].

The optimal approach to attain sufficient perfusion 
pressure through volume resuscitation and vasopres-
sors remains a subject of ongoing research without a 
definitive solution. Geriatric patients and patients with 
chronic hypertension, in addition to situations of severe 
head injuries and spinal cord injuries, should be given 
additional care and may be considered a contraindica-
tion for permissive hypertension [21].

OVERVIEW OF FLUID MANAGEMENT: LIBERAL, 

STANDARD, AND RESTRICTIVE

In 2014, the acronyms ROSE and SOSD were intro-
duced as concepts in fluid treatment. The acronym ROSE 
was introduced at the International Fluid Academy 
Day (IFAD) to represent the four phases of fluid ther-
apy: Resuscitation, Optimization, Stabilization, and 
Evacuation [22]. On the other hand, the concept of SOSD 
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(Salvage, Optimization, Stabilization, De-escalation) 
was proposed by The Acute Dialysis Quality Initiative 
(ADQI) group [23]. During the Resuscitation or Salvage 
phase, the treatment focuses on restoring or correcting 
shock conditions by aiming for an appropriate perfu-
sion pressure. During this stage, a fast infusion of fluid 
with a volume of 3–4 ml/kg is administered for 10 to 15 
minutes (which can be repeated if necessary), typically 
accompanied by vasopressors. During the Optimization 
phase, the patient’s hypovolemia is no longer severe, but 
their hemodynamics are still unstable. The objective of 
therapy in this phase is to prevent or minimize the risk of 
organ damage. The stabilization phase commences once 
the patient has achieved a condition of stability and con-
tinues for several days. During this stage, the goal is to 
achieve a fluid balance of zero or slightly negative. The 
evacuation or de-escalation phase is the final stage that 
seeks to eliminate surplus fluid. Typically, this stage hap-
pens naturally as the patient recovers. However, diuretics 
or ultrafiltration can be employed if necessary.

The terms liberal, standard, and restrictive are 
often used to compare fluid therapy regimens. Usually, 
researchers use their approach as a standard therapy 
and compare it with restrictive or liberal concepts that 
they define themselves. Even differences in definition 
make a restrictive group a liberal group in other studies 
[24]. The study of the comparison between restrictive 
and liberal is also sometimes more accurately seen as 
hypovolemia vs. normovolemia [25].

Definitions of liberal, standard, and restrictive fluid 
therapy vary widely across studies. The definition of this 
term probably should not only relate to the volume of 
fluid given but also to when to start and stop fluid ther-
apy performed [26].

FLUID RESUSCITATION AND ENDOTHELIAL 

GLYCOCALYX

The fluid displacement between plasma and intersti-
tium is an important concept that must be understood 
regarding fluid resuscitation in trauma situations. One 
of the earliest basic concepts of plasma and interstitial 
fluid transfer was proposed by Starling in 1896, that the 
movement of fluid across capillary membranes depends 
on a net imbalance between the osmotic absorption 
pressure of plasma proteins [colloidal osmotic pressure 
(COP)] and the capillary hydraulic pressure generated 
by the heartbeat [27]. The understanding of the exis-
tence of glycocalyx structures on the endothelial surface 
of blood vessels prompted Levick and Michel [28] to 
revise the concept proposed by Starling.

The endothelial glycocalyx is essential for controlling 
the permeability of blood vessels. The disruption of the 
glycocalyx increases the permeability of blood arter-
ies, allowing for the facilitated passage of water, pro-
teins, and other substances from the bloodstream to the 
external environment [29]. The molecular sieve effect 

of the glycocalyx structure determines the permeability 
of blood arteries. Additionally, the negatively charged 
nature of glycocalyx creates a charge barrier in blood 
vessels [30].

The type of resuscitation fluid used is known to affect 
the integrity of glycocalyx after hemorrhagic shock [31]. 
Crystalloids are reported to be associated with higher 
glycocalyx shedding than colloids [32,33]. Several dif-
ferent results regarding the relationship of resuscitation 
fluid with glycocalyx shedding have been reported, such 
as the type of fluid affecting post-hemorrhage glycocalyx 
thickness [34], but other studies report that such thick-
ness changes do not affect membrane permeability [35].

An optimal fluid therapy strategy can effectively 
restore tissue perfusion and oxygenation in the body. 
However, excessive fluid resuscitation can result in gly-
cocalyx shedding, which leads to globally increased per-
meability syndrome, which can lead to complications 
such as changes in tissue perfusion, abdominal com-
partment syndrome, and respiratory distress syndrome 
[3,36,37].

FLUID RESUSCITATION AND TRAUMATIC-

INDUCED COAGULOPATHY

Excessive fluid resuscitation in trauma patients can trig-
ger traumatic-induced coagulopathy. Overly administer-
ing fluids through crystalloids can lead to a decrease in 
the amount of oxygen that can be carried and a reduc-
tion in the concentration of substances that help with 
blood coagulation. Administering fluids at a tempera-
ture lower than the body’s normal temperature worsens 
heat loss in the body due to bleeding, low energy levels, 
and exposure to the environment. It also reduces the 
effectiveness of enzymes involved in the clotting process 
[38]. Excessive administration of acidic crystalloid solu-
tions will worsen the acidosis induced by reduced blood 
flow, leading to a decline in the effectiveness of clotting 
factors. This will result in a dangerous combination of 
coagulopathy, hypothermia, and acidosis, which can be 
fatal [39].

Trauma-induced coagulopathy (TIC) is the term 
used to describe the abnormal formation of blood clots 
that happens due to physical damage. During the early 
phases of TIC growth, there is typically a state of dimin-
ished hemostatic capacity, resulting in hemorrhaging. 
As TIC advances, there is a noticeable rise in blood 
clotting, which is linked to the development of venous 
thromboembolism and organ failure. Generally, TIC 
can be a mixed phenotype, including the bleeding and 
thrombogenic phenotypes [40].

Viscoelastic measures (VEM) are used frequently in 
the detection of traumatic-induced coagulopathy. These 
assays are whole blood tests that offer data on the speed 
at which a clot forms (fibrin cross-linking), reaches its 
maximum strength (platelet function), and ultimately 
breaks down (fibrinolysis). VEM tests can be employed 
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at the point of care, providing available data promptly 
within 5 minutes that can effectively guide resuscitation. 
Thromboelastography (TEG, Haemonetics) and throm-
boelastometry (ROTEM, Tem International GmbH) are 
the two main platforms used for these examinations.

Tissue injury and shock synergistically stimulate the 
activation of the endothelium, immune system, plate-
let, and clotting processes. The presence of the “lethal 
triad”, which includes coagulopathy, hypothermia, and 
acidosis, significantly intensifies these activations [41].

Insufficient oxygen availability for aerobic metab-
olism leads to a shift towards anaerobic metabolism 
at the cellular level [42]. Consequently, this results in 
heightened lactic acid build-up, inorganic phosphates, 
and oxygen radicals [43]. Furthermore, on a cellular 
level, damage-associated molecular patterns (referred to 
as DAMPs or alarmins), such as mitochondrial DNA 
and formyl peptides, are released. These substances then 
initiate a widespread inflammatory response through-
out the body [44].

The hemorrhaging also triggers significant alterations 
in the vascular endothelium across the body [45]. The 
endothelium and blood work together at the bleeding 
site to enhance the formation of a blood clot. However, 
the accumulation of oxygen debt and sudden increases 
in catecholamine levels eventually lead to the develop-
ment of endotheliopathies, which occur when the pro-
tective glycocalyx barrier is shed systemically [32].

During severe hemorrhage, adaptive and maladap-
tive alterations occur either at the bleeding site or in 
tissues throughout the body. Hemostatic plugs form at 
the bleeding site [46]. There is an increase in fibrino-
lytic activity in tissues that are distant from the site of 
bleeding, potentially as a protective reaction to avoid 
the formation of blood clots in small blood vessels [47]. 
Nevertheless, an overabundance of plasmin activity 
and auto-heparinization caused by glycocalyx shedding 
might result in hyperfibrinolysis and widespread coag-
ulopathy [48].

RESUSCITATION USING DAMAGE CONTROL 

TECHNIQUES

The word “damage control” originates from naval war-
fare. The word refers to a method of handling warships 
that have been damaged, with the goal of preserving the 
ship’s ability to sail and operate rather than fully repair-
ing all of the damage [49,50]. Subsequently, this concept 
was incorporated into the field of medicine as a strategy 
for treating patients who have sustained multiple and 
serious traumas [51].

Discussing damage control resuscitation (DCR) is 
essential when explaining the rationale and benefits 
of permissive hypotension in trauma resuscitation. 
Permissive hypotension, one component of DCR, aims 
to maintain a low but adequate blood pressure to reduce 

bleeding until bleeding control can be achieved, avoid-
ing excessive fluid resuscitation that could dislodge clots 
and exacerbate hemorrhage. DCR integrates a broader 
strategy that includes rapid hemorrhage control, limited 
fluid resuscitation, and preventing coagulopathy [52]. 
By incorporating permissive hypotension within DCR, 
the patient’s physiological condition is optimized during 
the critical pre-operative phase, minimizing the risk of 
worsening hemorrhage while maintaining vital organ 
perfusion [53]. Crystalloids are restricted in DCR to 
prevent dilutional coagulopathy, whereas hypotensive 
resuscitation is employed until significant bleeding is 
under control. Tranexamic acid is used empirically, and 
acidosis and hypothermia are prevented [54].

Rapid control of bleeding in non-compressible hemor-
rhage can be achieved by damage control surgery (DCS) 
or through Endovascular Resuscitation and Trauma 
Management (EVTM) [55], which is defined as “a term 
that represents a modern, multidisciplinary approach 
that integrates minimally invasive endovascular tech-
niques to manage severe trauma, particularly in patients 
with hemorrhagic shock” [21,56]. In most simple terms, 
endovascular resuscitation can be defined as the use of  
catheter-based therapies to achieve rapid bleeding control, 
such as Resuscitative Endovascular Balloon Occlusion of 
the Aorta (REBOA) [57–59]. REBOA is utilized to sta-
bilize patients at high risk of death from build-up torso 
bleeding, but it is not a device for definitive hemorrhage 
control. Its use should be integrated into a comprehensive 
system that includes DCR, definitive hemorrhage man-
agement, and postoperative critical care [60,61].

The use of crossmatched packed red blood cells 
(pRBCs) is ideal in trauma resuscitation. However, when 
crossmatched blood is unavailable, type O pRBCs are 
recommended for patients experiencing exsanguinating 
hemorrhage. In situations requiring massive transfusion, 
early administration of pRBCs, plasma, and platelets in 
a balanced 1:1:1 ratio can improve survival by minimiz-
ing the need for excessive crystalloid resuscitation [62]. 
Recently, whole blood has re-emerged as a viable option 
for resuscitation in hemorrhagic shock [63]. However, 
clear guidelines regarding when to opt for whole blood 
over individual blood components remain absent.

The administration of blood products in the pre-
hospital setting is also possible, although studies have 
produced mixed outcomes [64–68]. Currently, there are 
no definitive recommendations supporting or opposing 
prehospital blood product administration [21].

ATLS AND EUROPEAN GUIDELINES

In 2013, the Advanced Trauma Life Support (ATLS) 
course implemented multiple modifications to its resus-
citation method. The adjustments involved eliminat-
ing the term “aggressive resuscitation” and suggesting 
permissive hypotension prior to bleeding control. 
Additionally, the advice is now to reduce the amount 
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of crystalloids from 2 liters to 1 liter and to administer 
plasma and platelets early in patients who need exten-
sive transfusions [69]. The 2013 European guidelines on 
the management of bleeding and coagulopathy included 
a recommendation regarding hypotensive resuscitation 
[72]. According to this recommendation, the target SBP 
should be maintained between 80 and 90 mm Hg until 
major hemorrhage can be controlled in cases of trau-
matic injury without brain damage. The 2023 European 
guidelines for managing bleeding and coagulopathy 
recommends a limited volume replacement strategy 
with a blood pressure target of 80–90 mm Hg (MAP 
50–60 mm Hg) until major bleeding is controlled and 
there is no clinical evidence of brain injury in patients 
with severe head trauma. If the Glasgow Coma Scale 
(GCS) score is less than or equal to 8, it is advised to 
maintain a MAP of at least 80 mm Hg. Table 1 com-
pares the ATLS and European Guidelines on fluid resus-
citation on trauma.

VASOPRESSORS AND FLUID RESUSCITATION  

IN TRAUMA

In trauma resuscitation, rapid hemorrhage control and 
restoration of adequate tissue perfusion are the primary 
goals to prevent further organ damage and mortality. 
Vasopressors, commonly used in non-trauma shock 
management, are not recommended for initial use in 
trauma resuscitation due to the risk of exacerbating 
hypoperfusion, as vasoconstriction can impair oxygen 
delivery to tissues already compromised by hemor-
rhagic shock [73]. The European guidelines on trauma 
management highlight that vasopressors may delay the 
recognition of bleeding by artificially maintaining blood 
pressure without addressing the underlying cause of 
hypovolemia [73]. Their inappropriate use can lead to a 
worsening of tissue ischemia, particularly in situations 
where vasoconstriction compounds existing circulatory 
compromise [74]. However, vasopressors may be indi-
cated in cases of neurogenic shock or in patients with 
traumatic brain injuries where maintaining cerebral per-
fusion pressure is critical [71]. According to the ATLS 
guidelines, fluid resuscitation and hemorrhage control 
must be prioritized before considering the cautious use 
of vasopressors in trauma patients [71,75].

The 10th edition of ATLS suggests administering 
warm saline as resuscitation fluids up to a volume of 
1 liter in patients with class I or II bleeding. In cases of 
hemorrhage classified as class II or higher, it is advis-
able to utilize blood products rather than adding more 
crystalloid or colloidal fluids. The ATLS guidelines do 
not include detailed advice for the use of vasopressors 
[71]. According to the recommendation of the European 
guidelines, vasopressors should be used when fluid resus-
citation fails to achieve SBP objectives of 80–90 mm Hg 
or when severe hypotension caused by bleeding results in 
SBP below 80 mm Hg. Noradrenaline is a recommended 

vasopressor in situations where there is no dysfunction 
of the heart, whereas dobutamine is the recommended 
vasopressor in situations when there is dysfunction of 
the heart. If the amount of bleeding is too much and if 
the combination of crystalloids and vasopressors cannot 
adequately maintain the basic flow of blood to the tis-
sues, colloid infusions might be considered as an addi-
tional alternative to restore blood flow [21].

Hemorrhagic shock is also reported to be related to 
a deficiency of arginine vasopressin. In 2019, Sims et al.  
[76] demonstrated that administering a low dose of 
arginine vasopressin (a surge of 4 IU followed by 0.04 
IU/min) reduces the need for blood products. A previous 
double-blind randomized trial evaluated the safety and 
effectiveness of including vasopressin in resuscitative 
fluid, and the results are consistent with that study [77].

Ethical Approval and Informed Consent

Ethical approval was not required. Written informed 
consent was not required.

CONCLUSION

In conclusion, fluid resuscitation strategies in trauma 
management have shifted from traditional aggressive 
approaches to more refined methods such as permissive 
hypotension and restricted volume resuscitation. These 
strategies aim to limit the adverse effects of fluid over-
load, such as coagulopathy, hypothermia, and acidosis, 
while optimizing tissue perfusion and reducing mortal-
ity. Permissive hypotension has demonstrated significant 
survival benefits by maintaining lower SBP until defini-
tive hemorrhage control can be achieved. Furthermore, 
restricted volume resuscitation minimizes glycocalyx 
shedding and prevents complications associated with 
excessive fluid administration.

The integration of these principles into DCR proto-
cols has further improved trauma outcomes by reduc-
ing the need for large volumes of crystalloid solutions 
and emphasizing the early use of blood products. This 
approach aligns with contemporary guidelines such as 
those provided by ATLS and European trauma manage-
ment, which advocate limited fluid use and hypotensive 
resuscitation in non-head trauma patients.

Despite these advances, the use of permissive hypo-
tension and restricted volume resuscitation must be 
carefully tailored to individual patients, particularly 
those with traumatic brain injuries or spinal cord inju-
ries, where higher perfusion pressures may be required. 
Further research is needed to refine the optimal resusci-
tation strategies for specific patient populations, espe-
cially in geriatric trauma and those with pre-existing 
chronic conditions. Overall, permissive hypotension 
and restricted fluid resuscitation represent key compo-
nents of modern trauma care, contributing to improved 
survival and reduced morbidity in hemorrhagic shock 
management.
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