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Real life applications enter primary and secondary school education in two ways – for creat-
ing interest in subjects which may otherwise be abstract, and for the purpose of making use 
of the school subjects in day-to-day situations. Here, the prime example is mathematics. A 
demand for a close connection between mathematics and applications in school may be 
found in national curricula, and is present in textbooks. On the other hand mathematics is 
considered and taught to be a deductive, a priori, science with internal truth makers, struc-
tured by propositions and proofs. Mathematics is presented both as empirically grounded 
and as an analytic science, creating a possible conflict for students. The problem of the ap-
plicability of mathematics is also discussed within philosophy of mathematics: How is it pos-
sible for a priori truths to contribute essentially to our descriptions of the world? 
 
From a philosophical point of view, we try to shed light on how this seeming paradox may 
be explained and handled. Central are our views on mathematical concepts as explications 
and on concept formation in mathematics. 
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Introduction 
It is well known that personal interest and motivation on a student’s behalf is a posi-
tive factor for learning.1 In primary and secondary school this is often interpreted as a 
need for school subjects to be made relevant for the student in everyday life. For some 
subjects this may come natural enough, while for others the connection to the stu-
dents’ daily lives may be somewhat laboured. Several subjects include, already in pri-
mary school, abstract concepts that need concretising for the students to grasp. But 
the very concretisation may also be an obstacle for the student’s understanding of the 
abstract. Here we discuss how to understand applicability, abstraction and generalisa-
tion from a philosophical point of view, taking mathematics as our prime example. 

It may be argued that the road to mathematical knowledge goes via applied mathe-
matics. Such a view is made explicit by Wright (2000) who, discussing a neo-Fregean foun-
dation of analysis, declares that 

 [...] it seems clear that one kind of access to e.g. simple truths of arithmetic precisely pro-
ceeds through their applications. Someone can – and our children surely typically do – 
first learn the concepts of elementary arithmetic by a grounding in their simple empirical 
applications and then, on the basis of the understanding thereby acquired, advance to an a 
priori recognition of simple arithmetical truths. (Wright, 2000, p. 265) 

The question thus arises of how this empirical grounding is possible. How is it at all 
possible to ground a priori–truths empirically? In school, teachers are faced with the 
dilemma of, on the one hand, teaching mathematics as a general, abstract, a priori, 
deductive science, and, on the other hand, grounding and motivating students’ interest 
in mathematics empirically through various types of applications. On the one hand 
mathematics is presented as based on proofs and having, so to speak, internal truth 
makers. On the other hand student motivation should, at least according to some cur-
ricula and educational approaches, be found in applications. 

A question of concern is then how teachers may lift their mathematics teaching 
from the concrete everyday world to the general and abstract. As discussed by Witzke, 
Struve, Clark, and Stoffels (2016), referring to, among others, Schoenfeld (1985, 2011), the 
transition from the applied, near-empirical mathematics taught in lower grades to abstract, 
often axiomatic formal mathematics met at university may cause problems for students. 
This transition of view of the nature of mathematics, from the concrete to the abstract, 
may, according to them, even be a major reason for students to drop out before graduating 
in mathematics. 

Lundin (2012), referring to among others, Dowling (2010), Palm (2002), and con-
tributions in Verschaffel’s et al (2009), discusses the related, though not altogether equiva-
lent, issue of the use of word problems in mathematics education.  As these authors show, 
the use of such problems, which is obviously connected to the application of mathematics, 
may be beneficial for learning, but may also be criticised. Lundin, however, takes a com-
pletely different stance from us in criticising the very idea of applicability of mathematics in 
a school context. Here we, on the contrary, show how the applicability of mathematics 
may be understood in such a context. 
                                                
1 In the case of mathematics, cf. Hannula (2012) for a recent overview. 
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Now, the applicability of mathematics presents a well-known problem also in 
the philosophy of mathematics. A classical formulation is Wigner’s: 

 [...] the enormous usefulness of mathematics in the natural sciences is something border-
ing on the mysterious and [...] there is no rational explanation for it. [...] The miracle of the 
appropriateness of the language of mathematics for the formulation of the laws of physics 
is a wonderful gift which we neither understand nor deserve. (Wigner, 1960, pp. 2, 14) 

This problem is still in focus, which may be seen e.g. from Pincock’s (2015) up to date 
overview in the Internet Encyclopedia of Philosophy. There Pincock also refers to 
Wright (2000), and, among others, Steiner (1998, 2005), Colyvan (2001), and Parsons 
(2008).2 A recent example of the vitality of the current debate is also the on-going dis-
cussion of the Indispensability Thesis, emanating from Quine and Putnam, and later 
discussed by e.g. Maddy.3 The thesis states that mathematics is not only useful or ap-
propriate, but indispensable to science. Consequently, it is claimed, we should commit 
ourselves ontologically to mathematical entities, just as to physical ones. Learning 
mathematics is thus considered an indispensable part of learning science, and, as sci-
ence, mathematics may in the light of its indispensability to science be considered em-
pirically grounded. 

Any standard empiricist view on knowledge and learning underlines the necessity of 
empirical grounding. Here one may, even taking Piaget’s critique of empiricism into con-
sideration, count both Piaget and Vygotskij as empiricists in the weak sense that 
knowledge, also in constructivist perspectives, is constructed in interaction with reality and 
is thus (in this weak sense) empirically grounded. A recent example arguing for empiricism 
in mathematics is Jenkins (2008). Mathematical concepts are according to her in general 
empirically grounded, in spite of mathematics being a priori.4 

Ontologically, both nominalists and realists face the problem of the applicabil-
ity of mathematics. Nominalists, who mean that there are no mathematical objects, 
have to explain how non-denoting terms such as “three” and “derivative” may 
be used with success. Realists, being of the opinion that mathematical objects 
are real but abstract, have to explain our knowledge of such objects, and their 
relation to the empirical world.5 These two positions are not the only ones availa-
ble, even if they are certainly the most common ones in the literature today. An alter-
native realist version is Aristotle’s, and it may be argued that his views on the relation 
between mathematics and empirical reality provide a fruitful ground for an analysis 

                                                
2 Steiner (1998, 2005) presents several quotations from researchers highlighting the same issue, and provides 
references from Plato through Descartes, Berkeley, and Kant to contemporary philosophers like Shapiro, 
Field, and Colyvan. 
3 There is a vast discussion on this issue amongst philosophers of mathematics. Cf. e.g. Quine (1981), Putnam 
(2012) and Maddy (1992, 1997). For up to date information and many more references cf. Colyvan’s entry 
Indispensability Argument in www.plato.stanford.edu. 
4 Cf. Roland (2010), Tennant (2010), and Sjögren and Bennet (2014) for a discussion and criticism of Jenkins’ 
views. 
5 This problem has been much discussed recently. Two different types of attack, are provided by Steiner 
(1998) and Bangu (2012). 
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of the problem of applicability.6 The problem is thus not confined to mathemat-
ics education, but lives in a wider context. 

It is common amongst philosophers of mathematics to view mathematical ob-
jects (entities) as abstract.7 Here we adhere to this view, but do not commit ourselves 
to any particular ontology. 

What we offer in this paper is a philosophical analysis of how mathematics re-
lates to empirical reality. An understanding of this relation is, as we see it, a necessary 
component in understanding how, if at all, students from an early age may ground their 
mathematics in reality. Thus, it is our belief that the view we present may give guidance for 
mathematics education in providing the teacher with an awareness of the difficulties in 
question. 

Note that the question we discuss is not an ontological one. On the contrary we 
wish to emphasize that our discussion should be taken as ontologically neutral. We see 
applicability as a relation between mathematics and empirical reality, whatever ontological 
status either of these realms are believed to have.  

Next we provide a discussion on applications of mathematics in relation to 
learning. This is followed by our view of mathematical concepts as explications, in 
Carnap’s sense, which leads us to a discussion of the abstract character of mathe-
matical concepts, and the importance of making idealizations in applying mathe-
matics. Finally, consequences for mathematics education are discussed. 

In fact the choice of focusing on mathematics, rather than on some other ab-
stract subject, is somewhat arbitrary. Thus we believe our discussion is relevant in a 
broader context than just mathematics and mathematics education. 

Application Related to Learning 
Without taking stance in any particular theory of learning, we outline some well-
known examples of how mathematical concepts may be introduced to primary or 
secondary school students. Here we take negative numbers as a first example. Starting 
from the number line of natural numbers, negative numbers are introduced by teach-
ers in various ways. Since the concept of negative number is abstract, and known to be 
difficult to grasp for some students, one normally starts off from some kind of con-
cretization or metaphor.8 Examples of concretizations and metaphors used in this case 
are negative numbers as vectors, as motion (balloons moving up or down and the 
like), as owing money, or as sad and happy people moving in or out of town.9  

The idea behind using concretisations such as these is that the students should 
grasp the purpose of the metaphor used, and decontextualize, generalize and abstract to 
form their own conceptions of the mathematical concept in question, in this case negative 
number. Different theories of learning are used to explain this process, often underpinned 
                                                
6 See Franklin (2014) for an elaboration of Aristotle’s ideas, relevant for mathematics education. 
7 See the introduction by Panza and Sereni (2013) for some different opinions from both realists and 
nominalists on this issue. 
8 For an overview, and further references see Kilhamn (2011), who leans on Lakoff and Núñez (2000). 
9 See Kilhamn (2011, Ch. 3) for a vast number of different metaphors used. Here we do not discuss the differ-
ence between model, metaphor, and concretization. This is, however, also in this context an interesting subject, 
which will be discussed elsewhere. 
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by some form of constructivism.10 The student is supposed to gain both interest and in-
sight in the abstract concept via non-abstract examples from everyday life. There are, how-
ever, at least two problems connected with this way of reasoning. 

First, it is not at all clear that fascination for a subject starts from applications in dai-
ly life. Examples of the contrary are subjects like astronomy or natural history. To our ex-
perience, many students from primary school and onwards have an interest e.g. in space or 
in dinosaurs. They may spend a lot of time collecting facts such as surface temperatures of 
stars and planets, distances in space or the life and habitats of animals extinct for sixty mil-
lion years. Neither of these areas of knowledge connects easily to daily life. So why should 
mathematics need such a connection? 

Second, there is a problem of abstraction. Apart from most subjects in school, 
mathematics is about abstract entities such as (negative) numbers or functions. These are 
not possible to point out ostensively like siblings, stars and (fossils of) dinosaurs. In fact 
this is the very reason we use metaphors and the like in our classrooms. A problem here, 
however, is that the metaphors or models we use are not coherent. They are far from 
pointing in the same direction, and some are even inconsistent or meaningless. 

Take multiplication as one example out of many. Often multiplication is introduced 
via a model of repeated addition: 3 · 5 is 3 (apples) added to (another) three (apples) etc. 5 
times. Of course this model must be abandoned, and may even cause conceptual problems 
when the child somewhat later in school is introduced to negative or rational numbers. 
Adding a number to itself a negative number of times, or !

"#
 or π times, makes little sense.11 

Thus other models or metaphors, using ice cubes or geometrical intuition, written and 
mental algorithms, methods of factorization, etc., are introduced along the way. In all cases 
these methods grossly underdetermine the concept of multiplication,12 and may even be 
mutually contradictory. But children do learn multiplication, anyway most do. 

Following Jenkins (2008) this is so, since mathematical concepts are empirically 
grounded. Empirical grounding is also a way to explain why mathematics is learnt via ab-
straction and generalisation, beginning in everyday reality. There must, however, be more 
to it than that. Let us again take an example, this time from geometry: The angular sum in a 
triangle is, we are taught, 180°. In classrooms this fact is, at least in Swedish classrooms, 
first motivated by letting the students cut off the corners of triangles they draw with paper 
and pencil, lay the little pieces of paper side-by-side, and note that they all more or less 
form a straight angle.13 In the best of worlds, this empirical ‘demonstration’ is later com-
plemented with a more or less formal proof. Now, why should we need a formal proof of 
a fact that we have already demonstrated empirically? And how is it at all possible to 
demonstrate an empirical fact deductively? 
                                                
10 Abstraction and generalization have been treated by many: Aristotle, Berkeley, Locke, Piaget, Dewey, and 
Sfard just to mention a few. For references and discussions see e.g. von Glasersfeld (1991). 
11 In fact, seeing multiplication as repeated addition causes problems already for the restricted case of natural 
number. This is also discussed by Steiner (2005). 
12 It may be noted here that multiplication is not at all definable in terms of addition within a framework of 
first order logic – both the arithmetic of only addition (Presburger Arithmetic) and the arithmetic of only 
multiplication (Skolem Arithmetic) are decidable, while the combined arithmetic of addition and multiplication 
(First Order Arithmetic) is not. 
13 In Sweden this is even the only technique used in some textbooks for year 10! 



 
 
 
 

Nordisk Tidskrift för Allmän Didaktik        61 

 
 

In the following we present an idea of concept formation in mathematics 
that highlights the role of mathematics in empirical applications, and which tries to 
answer these questions. Hopefully, we make it clear how the applicability of 
mathematics can be explained, and how this view may affect mathematics educa-
tion. Note that we do not present a theory of how individuals acquire concepts, but an idea 
of how mathematical concepts find their way into mathematics. Thus our view is philo-
sophical. An attempt to use these ideas psychologically, to analyse how individuals reinvent 
concepts, is provided by Dawkins (2015). A framework for discussing the relationship 
between mathematics and reality in a ‘situated learning’-context is provided by Dapueto 
and Parenti (1999). Here we start out with a few words on the concept formation 
process in mathematics. 

Concept Formation in Mathematics 
Two main philosophical sources for our views on concept formation are Aristo-
tle’s philosophy of mathematics, and Carnap’s use of explications as a means to devel-
op exact and fruitful concepts. Since these ideas have been presented elsewhere by 
Sj̈ogren (2011) and Bennet and Sjögren (2013), and our focus here is on education, 
we will be rather brief. 

According to Aristotle mathematical entities are inherent in substances, i.e. in indi-
vidual objects. By abstraction these entities, or traits, can be isolated in thought, but they do 
not have separate existence like the Platonic Forms have according to Plato. Mathematical 
objects, according to Aristotle, are not pure forms, and they are not sensible objects, but 
they are separable from sensible objects in thought. In a process of abstraction the mathe-
matician eliminates non-essential attributes in favour of essential ones. There is a differ-
ence, here, according to Aristotle, between physics and mathematics, in that the former 
treats accidental properties, like snub nosed, while the latter treats essential ones, like 
curved, (concerning Socrates’s nose) (Lear, 1982; Ross, 1924). In Aristotle definitions are 
made via genus and differentia specifica to finally reach the essential attributes, eliminating 
the non-essential ones, or to reach those attributes we want to pay attention to in a certain 
context (Heath, 1998). 

Now, an explication can be seen as an ontologically neutral device to accomplish 
something similar. A mathematician engaged in applied mathematics may try to isolate 
traits in objects or problems in order to receive essential ones, and by ‘essential’ we do not 
mean essential in a metaphysical meaning, but traits that may make it possible to analyse 
the object or problem at hand mathematically. 

Let us, before turning to Carnap’s views , briefly sketch just two examples of histor-
ical sequences of explications of concepts, central in teaching mathematics – function, and 
area. We begin by treating function.  

The first explicit, algebraic definition seems to be due to Johann Bernoulli in 1718, 
and Euler, somewhat later, defined this concept in the following way: 

A function of a variable quantity is an analytic expression composed in any manner from 
that variable quantity and numbers or constant quantities. Quoted from (Kleiner, 1989, p. 
284) 
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What Euler meant by “analytical expression” is not exactly clear, although he cer-
tainly meant it to be one formula. The concept function does not, however, have its 
origin with Bernoulli and Euler. It was used in the seventeenth century, by e.g. 
Leibniz, in geometrically formulated problems speaking of a tangent as a function 
of a curve. There are also historians who trace the concept all the way back to 
Ptolemy’s tables of chords in the Almagest, or to his predecessor Hipparchus. The 
function concept can be thought of as the vague concept of one entity determin-
ing another in some kind of (possibly causal) dependency, and different early expli-
cations can be seen as ways of mathematizing this concept. With Fourier and Di-
richlet we have the conception of an arbitrary, not law-like, connection between 
the variables, and from this idea the set-theoretic concept of function as graph ema-
nates. The function concept has thus evolved from a geometrical one, via an algebraic 
concept, to the set-theoretical concept.14  

Again there are several ways to teach students basic facts about functions.15 In 
our experience a normal strategy is to start from e.g. length, with students in the class 
as arguments for a variable and their respective lengths as function values. Also used 
are the   ‘function machine’ giving predictable outputs for given inputs (e.g. a squaring 
machine), input-output tables, graphs, functions as rules, and other representations. Of 
course these representations are used as models or metaphors. No one is to believe 
that functions really are any of these things, but the now standard, university text book 
notion of function as a type of relation, i.e. as a certain type of set, is far from the 
models used in (secondary) class. In spite of this, at least some students really do get 
appropriate conceptions of function. How is this possible?  

Our next example is the area concept. In Elements, there are no arithmetical results 
on how to compute an area. Instead, Euclid, for a given geometrical object like a rectilinear 
figure showed how to construct a square with the same area (Euclid, 300 BCE/1996: Book 
II, prop. 14). Somewhat later Archimedes used techniques, anticipating integration, to 
study areas of different geometrical objects as, e.g., the area of the region enclosed by a 
circle. In the early seventeenth century Fermat, among others, could determine the area 
under a curve like y = x2. This led in the hands of Newton and Leibniz to the infini-
tesimal calculus making it possible to define areas in a wider perspective. To go on, differ-
ent integration techniques (as Lebesgue integration) together with measure theory were 
developed to be able to treat still more complex problems.16 

In primary school the introducing of area is preceded by presenting and discuss-
ing the very idea of measurement. Maybe one first introduces direct measuring (the 
number of feet of a classroom wall), followed by indirect measuring (using a ruler). 
One next introduces the idea of measuring a rectangle, first using direct comparisons, 
and next using indirect measuring via plastic (or so) identical squares. Piaget’s (1954) 
notion of conservation of area is, of course, of importance here. Further one connects 

                                                
14 See Kleiner (1989) on the evolution of the concept function, and Kline (1972) for a more comprehensive 
treatment. 
15 See Vinner and Dreyfus (1989) for an early discussion on students’ conceptions. 
16 See Kline ( 1972) for a comprehensive treatment. 
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area to lengths, and ends up with formulas for the areas of rectangles, circles, etc.17 
Now, how is it possible for students, presented to various metaphors and measuring 
techniques in different contexts, to grasp the mathematical (abstract) concept area? 

Explications in Carnap’s Sense 
Our suggestion is that the processes of making abstractions, exemplified above, of 
isolating essential traits, using the nomenclature of Aristotle, is to be regarded 
as a process of making explications in the sense of Carnap (1950). In an explication 
the explicandum is the more or less vague concept, and the new, more exact one, is 
the explicatum. Here we use the term “exact” in the way Carnap does in the quotation 
below, synonymously with “precise” and as opposed to “fuzzy” or “vague”. As an 
example Carnap mentions Frege’s and Russell’s explication of the cardinal 
number three as the class of all triplets. The criteria an explicatum must fulfil are 
as follows: 

1. The explicatum is to be similar to the explicandum in such a way that, in most 
cases in which the explicandum has so far been used, the explicatum can be used; 
however close similarity is not required, and considerable differences are permitted. 

2. The characterization of the explicatum, that is the rules of its use [...], is to be given in an 
exact form, so as to introduce the explication into a well-connected system of scientific 
concepts. 

3. The explicatum is to be a fruitful concept, that is, useful for the formulation of many 
universal statements (empirical laws in the case of a nonlogical concept, logical theorems 
in the case of a logical concept). 

4. The explicatum should be as simple as possible [...]. (Carnap, 1950, Ch. 1) 

Formulating explications may be understood as a non-metaphysical way of con-
structing more precise concepts for a given purpose. In this way it is possible to 
replace vague, imprecise, or otherwise non-clear concepts by more exact ones. To be 
able to mathematize a part of reality, an abstract mathematical one or an empirical 
one, sufficiently exact mathematical concepts are needed. And this can be achieved as 
above by explication. Not only concepts of empirical science have an origin in reality, 
but also mathematical ones do. Mathematics has in this way been able to generate con-
cepts via explications, concepts that are fruitful in mathematizing reality. 

Examples are easy to find: The concepts mentioned above, function and area, 
can be seen as far removed from empirical reality, but tracing their origins, in a 
kind of concept archaeology, will lead us back to a more or less non-clear empiri-
cal counterpart. The concept of functionality has its origin in one process 
uniquely determining another. Perhaps it may even be seen as a mathematical 
counterpart to causality. With the modern set-theoretical explication this origin is 
lost. Striving towards generality mathematics has, through history, also strived to-
wards even more abstract concepts. This tendency has furthered mathematics 

                                                
17 In general we believe that mathematics education in many cases more or less follows a historical develop-
ment. But we do not, thereby, believe that each student must, or should, undergo the same process. Gravemei-
jer and Doorman (1999) discuss this interesting issue, as do Witzke et al (2016). 
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from empirical experience even more. We therefore need to make some com-
ments on the abstract character of mathematical concepts. 

Mathematical Concepts are Abstract 
The dichotomy of the realm of objects in abstract and concrete, is fundamental for 
philosophy in general and for ontology and epistemology in particular. We will not, 
and need not, try to define this dichotomy precisely, but in agreement with a vast ma-
jority of philosophers we believe objects like thoughts and numbers to be abstract, 
while objects like trees and trams are concrete. As stated above, we are not concerned 
with ontological issues here. Thus it is irrelevant for our discussion whether e.g. the 
number five is considered to be mental or not. Of course this doesn’t mean that there 
are no constraints at all involved when speaking of (mathematical) concepts. As an 
example, learning would be impossible to explain (or understand) without presuming 
concepts to have (at least) a certain amount of inter-subjectivity. It does make sense to 
speak of ‘grasping the number p or the concept of function’. Teachers even assess stu-
dents’ grasping of such concepts. 

We do, however, like to emphasize the abstract character of mathematical con-
cepts. This will also show the need of idealizing situations (see below) in order to make 
applications of mathematics possible. 

Consider, in order to stress some philosophical problems for mathematics, the fol-
lowing drawing – a play with a painting of Magritte: 

 

 
 
Figure 1. This is not a circle. 
 
A student once told one of us that π gets different values using the inner and outer part 
of the ‘circle’, respectively. Ignoring that the diameter is different in the two cases, 
and believing that the drawing is a circle, this proposal is completely legitimate! Of 
course a drawing is not really a mathematical circle, since it has a width. Imagine a 
student who has grasped the idea of circle, and who gets the task of computing the 
diameter of a tree trunk. Naturally, they can raise the objection that a cut of the 
trunk isn’t a circle. In fact, the step to imagine that a cut of the trunk is to be regard-
ed as a circle isn’t a trivial matter.18 Here we regard the (precise) mathematical concept 

                                                
18 See Dapueto and Parenti (1999) for a discussion in a somewhat different context. 
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as an explication, in Carnap’s sense, of the (vague) every day one.  This example is not 
unique, and one could compare with the concepts velocity and work in physics and in 
ordinary language situations. Examples from other fields are fish and species in biolo-
gy (are octopuses fish?), salt and equilibrium in chemistry, and mental illness in psychi-
atry and law. 

In the commentaries of the Swedish National Agency for Education concerning the 
Swedish curriculum, it is emphasised that students are to “meet natural numbers” (Swe-
dish National Agency for Education, 2011). What does it mean to ‘meet’ the number 
three? Suppose that we with Lewis (1986) or Maddy (1990) can experience small sets of 
concrete things (and not just the things themselves), and that our attention is directed 
towards a certain collection of objects – be it, e.g., three coffee cups with saucers and 
spoons. How are we to know which number(s) we ‘meet’ in a situation like this? 

Concerning geometry, the same commentaries tell us that 
The area of knowledge “Geometry” deals with how to measure and describe ones vicini-
ty. Within geometry one recognizes, measures, interprets, and describes the world around 
us from a spatial perspective using different forms of expression. (Swedish National 
Agency for Education, 2011, p. 18, our translation) 

This purely empirical perspective is further emphasized when we learn that students in 
the lower grades shall “meet geometric objects such as boxes and balls”, and that they 
shall “draw and build” rectangles and “construct regular patterns in the world around 
them”. 

The same commentary has suddenly switched perspective, however, when writing 
about lower secondary school (year 7 to 9). Here the student should be given the oppor-
tunity to “argue for the correctness of formulas”, reason about how one “within mathe-
matics decide on what is true”, and that a foundation is to be given for the students to 
understand the concepts proposition and proof. 

Now, obviously, there are no propositions in geometry concerning boxes and balls, 
so somewhere between the lines in these passages, there is a tacit transformation from 
geometry as part of our empirical study and description of the world to geometry as deduc-
tive science. But how can we expect students to understand the purpose of proofs, when 
mathematical objects are objects in everyday life? Again: Why shall I prove The Pythagore-
an Theorem, when I have measured so many triangles? 

We conclude this section with an example concerning probabilities. Consider 
the outcomes throwing a single die. When throwing a physical die several out-
comes are possible. Depending on the form of the die, it can land on any of its 
faces, and if the corners and edges are well rounded it may even land on a cor-
ner. When describing this situation in mathematics, we speak of a mathematical 
die. This is a die that is perfectly homogeneous, has sharp edges and corners, for 
which the only possible outcomes are those with one of the faces up, and for 
which the probability that a specific face comes up is exactly 1/6. This is not a die 
that exists in empirical reality. 

We can generalize the situation one step further, and describe it as a discrete, uni-
form, probability distribution with six outcomes. And now there is no difference, mathe-
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matically speaking, between drawing a card from a deck of six cards or drawing a ball from 
an urn with six balls in it. 

Whatever ontological status mathematical concepts may have they are, 
thus, abstract. This means that we do not meet mathematical entities, neither cir-
cles nor numbers, in our daily experiences, but we can, as Aristotle suggested, 
via a process of abstraction isolate the essential traits of a situation (Franklin, 
2014; Sjögren, 2011). This also means that introducing new concepts in mathe-
matics education may be problematic.19 Mathematical concepts have, however, an 
origin in empirical experience. As stated above they are abstractions, carved out via 
explications. This makes it understandable how the applicability of mathematics is pos-
sible. Still, this is complicated, and it is somewhat worrying that it isn’t discussed in e.g. 
the Swedish mathematics curriculum. In these texts the applicability of mathematics is 
taken for granted, and not a word is said on the problem of relating mathematics to 
‘reality’ – a well-known (and important) problem in the philosophy of mathematics as 
well as for mathematics education. 

If, on the other hand, mathematics curricula would explicitly reflect on mathemati-
cal concepts being abstract and having an empirical origin, mathematics being applicable 
since it is abstract, this could give teachers guidance as to why and how they may use con-
cretizations without pretending mathematics to actually be about everyday objects. As e.g. 
Witzke et al (2016) show, pretending mathematics to be about concrete objects makes for 
an “abstraction shock” when students meet a more scientific view of the subject. 

Abstractions and Idealizations 
Related to the process of abstraction is the process of idealization. Speaking in the lan-
guage of Aristotle, the process of abstraction can be seen as an elimination of non-
essential properties; properties that we do not want to pay attention to, to follow 
Lear (1982). Triangles can be, e.g., isosceles or right-angled, and in a process of ab-
straction we may disregard features such as these. When studying composition of 
functions we leave out of account non-essential traits such as if the functions are 
odd or even and arrive at, e.g., their group structure. Non-essential properties of an 
object of learning may, and should, be varied in learning situations, while, of course, 
keeping essential properties fixed (Ling & Marton, 2012; Marton, 2014). 

In a process of idealization, on the other hand, the mathematician or empirical 
scientist may disregard essential properties such as friction when studying mechanical 
systems. In cases such as these the aim is rather to arrive at a problem description that 
can be analysed using mathematics at some suitable level. 

Another road to understanding the difference between abstraction and ideali-
zation is implicit in Lewis’ ideas of possible worlds connected to modal logic. To cite 
Lewis: 

Idealizations are unactualized things to which it is useful to compare actual things. An ide-
alized theory is a theory known to be false at our world, but true at worlds thought to be 
close to ours. The frictionless planes, the ideal gases, the ideally rational belief systems – 
one and all, these things that exist as parts of other worlds than our own. The scientific 

                                                
19 See Bennet and Sjögren ( 2013) for a discussion. 
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utility of talking of idealizations is among the theoretical benefits to be found in the para-
dise of possibilia. (Lewis, 1986, p. 27) 

These ideal objects thus exist in possible worlds close to ours, but not in our world. 
But abstract objects, at least mathematicalia, are to be applicable in every possible 
world. Accepting this jargon of modalities might shed some light on the distinction. 
When a mathematician or a scientist makes an idealization, they are aware of the in-
troduction of falsehoods. In making abstractions, on the other hand, focus is on arriv-
ing at essential traits of the studied objects, and the realistically inclined mathematician 
might think they have analysed some existing object, as when numbers are explicated 
as properties of classes. The anti-realist mathematician can make the same abstraction, 
but even though regarding the received concept as fruitful, they refuse to speak of the 
abstract objects as having an independent existence. 

Still another way of looking at the difference between idealization and ab-
straction, when already developed mathematical theories are used in applications, is 
that we try to idealize the physical situation so that it fits into the mathematics. 
In a first approximation we think of, e.g., frictionless planes or non-elastic colli-
sions. These approximations may be taken as limit situations of existing states. We 
can imagine surfaces with less and less friction, and ideally we can imagine fric-
tionless surfaces. The case with abstraction, at least when trying to find new con-
cepts, is different. Here we try to see what is essential in the given problem 
situation, or to see patterns in structures that can be developed into fruitful 
mathematics as when Newton defined, or discovered, that velocity may be expli-
cated as a time derivative, or that force is proportional to the second derivative of 
position. Roughly speaking, with an idealization we try to fit reality into mathe-
matics, mathematizing horizontally, and with an abstraction we try to isolate essential 
features in order to explicate concepts. 

Mathematics and the world 
We now return to the problem of applicability of mathematics in mathematics edu-
cation. Taking the idea of concept formation described above ad notam, and 
connecting it with the need to idealize situations, will shed light on how mathe-
matics is applied in school. 

To apply mathematics in a ‘real world’ situation, a generalization is needed. This is 
so even in very simple situations. A student using the same formula when calculating the 
volume of a classroom and the volume of a swimming pool, needs to realize, not that 
classrooms or swimming pools are actually cuboids, which they of course are not, but that 
they, idealized, have a common shape, and that this shape is a mathematical entity which 
volume may be calculated with a certain formula.20 

A similar comment is in place concerning mathematical modelling. Elaborating 
the metaphor of Niss (2012) for modelling as a triple (D, f, M), where D is a real world 
domain, M a mathematical structure, and f a (structure preserving) mapping from D to 
M, idealization involves the choice of D. In fact a more accurate metaphor would have 
five components (R, g, D, f, M), where R is the actual real world situation, D is an ideal-
                                                
20 Steiner (2005) gives other examples. See also Blum and Niss (1991). 
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ization of R, g is a (forgetful) mapping from R to D, f is a structure preserving map-
ping, and M is a mathematical structure. The idealization thus involves the choice of D 
related to (the given – also this is of course a simplification) R, while abstraction con-
cerns the choice of M (and f ).21 

Thus an understanding of the interplay between abstraction and idealization 
is an important key, if we are to explain the difficulties with the applicability of 
mathematics in advanced science as well as in school. 

Turning to the classroom situation, a way to treat applications in mathematics 
teaching at all levels is to have extensive discussions in the classroom on issues 
of idealizations. One and the same situation can typically be idealized in different 
ways. In making these idealizations, considerations must, of course, be taken to 
the mathematical level of the students. Note that we do not treat the real situation, 
but an idealization of it.22 

Using Carnap’s framework for theoretical concepts as explications one may view 
e.g. (instantaneous) velocity as an explication of our everyday concept speed, work in phys-
ics as an explication of our everyday work, circle in mathematics as an explication of our 
everyday circle or ring, and so forth. Note, however, that most explications are theory de-
pendent, and vague everyday concepts may be explicated in different ways. Thus, velocity 
is a different concept in classic Newtonian physics, compared to relativity theory. In the 
first case velocity is an additive concept, in the second case not. But in both cases velocity 
is closely connected to our empirical world.  

Mathematical concepts, however, are different from empirical ones. Concepts such 
as elephant or green may be learnt by pointing out elephants and non-elephants or green 
and non-green objects in our surroundings, but a concept like multiplication, or number 
(finite cardinal) for that matter, is not possible to point out in the same manner. Thus we 
use metaphors and the like, and help learners to explicate and abstract. In case the concept 
to be learnt is mathematical, it may be argued that essentially only one explication is possi-
ble, and learners may succeed in grasping the concept in spite of the teacher using underde-
termining or even conflicting metaphors.23 

However this may be, there is a distance from our experienced world to the abstract 
‘world’ of mathematical concepts (not necessarily meant in a Platonic sense). Mathematical 
concepts are not empirically grounded, as concepts in empirical sciences are, even though 
they may have an empirical origin (Jenkins, 2008; Lakoff & Núñez, 2000; Sjögren & Ben-
net, 2014). Instead the very idea with mathematics is that it is abstract, general, and non-
contextualised. Geometry is a good example here: As far as geometry describes the world, 
it is not mathematics, i.e. in so far as it is mathematics, it doesn’t describe the world. Ge-
ometry as mathematics is deductive and presents to us a number of possible worlds via 
different geometries, each geometry having its own class of models (logically speaking). It 
is then up to the physicist to decide which geometry that best suites their purposes.24 The 
                                                
21 Also cf. Blum and Niss (1991). 
22 This issue is also discussed by Bråting and Pejlare ( 2008). 
23 This ‘robustness’ of mathematical concepts is discussed in Bennet and Sjögren (2013), Sjögren (2011), and 
Sjögren and Bennet (2014). Dawkins (2015), drawing on Sjögren (2010), discusses a related notion of “psyco-
logical explication”.  
24 For a discussion of these issues, see Giaquinto (2007). 
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same goes, in fact, for arithmetic. In principle it is possible to choose some non-standard 
model of natural numbers as the adequate description of the world. Here, however, there is 
a difference from geometry, since there is a categorical description of the standard model 
in the form of the Dedekind-Peano second order number theory. In light of this theory, 
we are not free to choose truth-values for propositions that concern finite cardinal num-
bers. 

A way of putting this is that mathematical truth makers are internal, while truth 
makers for empirical sciences are external. Thus the notion of proof is not only essential in 
mathematics, but proofs are the only way to verify truths. Using a Popperian terminology, 
paper triangles and the like belong in a context of discovery, while proofs belong in a con-
text of verification. Both contexts are present in the classroom, but they should not be 
mixed up. 

Thus it is important in learning situations that the teacher (and learner), both ideal-
izes and abstracts. To idealize is, in a sense, to substitute an appropriate possible world for 
the real world, and abstraction helps finding the appropriate mathematical concepts for the 
particular context at hand. Abstractions may be seen as explications in Carnap’s sense, and 
we believe it is possible for students from an early age to abstract. Let us give here a simple 
example that we have tested. 

Students may, already in the first years of primary school, be given the following 
task: Let’s say that you may climb a staircase taking small steps, i.e. one step at a time, or 
big steps, i.e. taking two steps at a time. In how many different ways can you reach the 
twentieth step by combining small and big steps? 

We have noticed that this is a type of task that really engages children – they see it as 
a game with very simple rules. What happens is that, given this task to small groups, stu-
dents aged 7 or older (including groups of university students) start walking in the nearest 
staircase. They soon realize that it is hard to keep track of what combinations are tested, so 
they start recording them using paper and pencil. The next step is to stop walking, and 
stick to record keeping. Finally they loose interest in the staircase altogether, and work only 
with numbers. Even the youngest students fairly quickly see the pattern, and the final step 
is to just prolong the number sequence (which is the Fibonacci sequence). Finally, at least 
with students from age 9 or 10, it is possible to discuss how this series is defined, and pre-
cisely why it solves this particular problem (the explanation being, indeed, simple). 

This example shows how it is possible to go from a concrete, everyday problem (a 
game of walking in stairs) to pure mathematics (discussing number series), even in the be-
ginning of primary school. And this without pretending that mathematics is “met” in or is 
part of everyday life. 

Using a terminology from Gravemeijer (1999) and Zandieh and Rasmussen (2010) 
the students’ activities may be described as a process from an initial situational stage of real 
world experiment through a referential stage of structuring their game, onto a general stage 
where mathematics takes form, and reality is put in the background, ending up in a formal 
stage where the students discuss, in a sense, pure mathematics.25 Our thesis is that the 
mathematical concepts link to the initial real world situation by being expli-
cations of real world concepts. 
                                                
25 For a discussion also cf. Dawkins  (2015). 
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Conclusions 
In contrast to Lundin (2012) we thus see no reason to pretend that word prob-
lems in school are to give an illusion of being ‘real world’ problems in any 
other respect than being examples of how mathematics may be used as a 
tool in combination with a process of explication, abstraction, and idealiza-
tion. The word problem functions as a starting point in a transition from 
discussing a real world problem, to problem solving within mathematics. 

These processes constitute the very core of mathematics, making 
mathematics, in the famous words of Wigner (1960), unreasonably effec-
tive in the natural sciences. Thus mathematics is not applicable in contrast to 
being abstract, but applicable since it is abstract. Thereby, in school, in order 
for students to learn mathematics, teachers must lift their mathematics 
teaching from the concrete everyday world to the abstract and general. 
They must lead the students from real world concepts to explications in 
the form of appropriate mathematical concepts. It is not until this is done, 
that mathematics becomes understandable as a deductive, yet applicable, 
science. 
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