Cui bono? Who benefits from leveraging information behaviour of their online social connections?

Authors

  • Danielle Lee Chung-Ang University
  • Peter Brusilovsky University of Pittsburgh

DOI:

https://doi.org/10.47989/ir30354555

Keywords:

Online Social Network, Information Similarity, Homophily, Multidimensional Interests of Online Users

Abstract

Introduction. The underlying assumption of social, link-based information access posits that individuals engaging in online social networks derive benefits from the information shared by their online connections. This assumption is scrutinised in this study through an examination of the information-sharing behaviour of individual users with their online social connections.

Method. This research utilised a large dataset pertaining to books and movies sourced from Imhonet, integrating elements of a recommender system and a social networking service. Specifically, the study incorporated 125,657 books, 44,184 movies, associated ratings, and a social network comprising 234,789 relationships.

Analysis. The analysis of user patterns categorised the target users into two distinct categories: those exhibiting sufficiently congruent preferences with their online connections (suggesting the suitability of social link-based information access) and those lacking similar preferences with their connections (indicating potential ineffectiveness of social link-based information access).

Results. Subsequent assessments included the analysis of rating patterns and social characteristics of the target users that distinguish the two identified categories, which were examined using binary logistic regressions.

Conclusion. This study delved into the dynamics between online users' information-sharing tendencies with their online connections and the diverse user characteristics influencing these patterns.

References

Amendola, M., Passarella, A., & Perego, R. (2023). Social search: retrieving information in online social platforms - a survey. Online Social Networks and Media, 36, 100254. https://doi.org/10.1016/j.osnem.2023.100254

Anderson, A., Huttenlocher, D., Kleinberg, J., & Leskovec, J. (2012). Effects of user similarity in social media. In Proceedings of the fifth ACM international conference on Web search and data mining (pp. 703-712). Assoication for Computing Machinery. https://doi.org/10.1145/2124295.2124378

Arthur, J. K., Zhou, C., Mantey, E. A., Osei-Kwakye, J., & Chen, Y. (2022). A discriminative-based geometric deep learning model for cross domain recommender systems. Applied Sciences, 12(10), 5202. https://www.mdpi.com/2076-3417/12/10/5202

Baharifard, F., & Motaghed, V. (2024). Similarity enhancement of heterogeneous networks by weighted incorporation of information. Knowledge and Information Systems, 66, 3133-3156. https://doi.org/10.1007/s10115-023-02050-x

Bhukya, R., & Paul, J. (2023). Social influence research in consumer behavior. What we learned and what we need to learn? A hybrid systematic literature review. Journal of Business Research, 162, 113870. https://doi.org/10.1016/j.jbusres.2023.113870

Birk, M. V., Toker, D., Mandryk, R. L., & Conati, C. (2015). Modeling motivation in a social network game using player-centric traits and personality traits. In F. Ricci, K. Bontcheva, O. Conlan, & S. Lawless (Eds.), User Modeling, Adaptation and Personalization (pp. 18-30). Springer. https://doi.org/10.1007/978-3-319-20267-9_2

Bischoff, K. (2012). We love rock 'n' roll: analyzing and predicting friendship links in Last.fm. In Proceedings of the 3rd Annual ACM Web Science Conference (pp. 47-56). Association for Computing Machinery. https://doi.org/10.1145/2380718.2380725

Brusco, M. (2021). Logistic regression via excel spreadsheets: mechanics, model selection, and relative predictor importance. INFORMS Transactions on Education, 23(1), 1-11. https://doi.org/10.1287/ited.2021.0263

Brusilovsky, P., Smyth, B., & Shapira, B. (2018). Social Search. In P. Brusilovsky & D. He (Eds.), Social Information Access: Systems and Technologies (pp. 213-276). Springer International Publishing. https://doi.org/10.1007/978-3-319-90092-6_7

Brzozowski, M. J., Hogg, T., & Szabo, G. (2008). Friends and foes: ideological social networking. In Proceeding of the twenty-sixth annual SIGCHI conference on Human factors in computing systems (pp. 817 – 820). Association for Computing Machinery. https://doi.org/10.1145/1357054.1357183

Bugshan, H., & Attar, R. W. (2020). Social commerce information sharing and their impact on consumers. Technological Forecasting and Social Change, 153, 119875. https://doi.org/10.1016/j.techfore.2019.119875

Burke, R. (2007). Hybrid web recommender systems. In P. Brusilovsky, A. Kobsa, & W. Nejdl (Eds), The adaptive web: methods and strategies of web personalization (pp. 377-408). Springer-Verlag. https://doi.org/10.1007/978-3-540-72079-9_12

Cai, W., Jin, Y., & Chen, L. (2022). Impacts of Personal Characteristics on User Trust in Conversational Recommender Systems. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (pp. 1 - 14). Association for Computing Machinery. https://doi.org/10.1145/3491102.3517471

Cao, Z., Zhu, Y., Li, G., & Qiu, L. (2023). Consequences of information feed integration on user engagement and contribution: a natural experiment in an online knowledge-sharing community. Information Systems Research. 35(3), 1114 – 1136. https://doi.org/10.1287/isre.2022.0043

Chen, H., & Deng, W. (2023). Leveraging heterogeneous information based on heterogeneous network and homophily theory for community recommendations. Electronic Commerce Research, 23(4), 2463-2483. https://doi.org/10.1007/s10660-022-09546-8

Chen, Q. Z., Schnabel, T., Nushi, B., & Amershi, S. (2022). HINT: Integration Testing for AI-based features with Humans in the Loop. In Proceedings of the 27th International Conference on Intelligent User Interfaces (pp. 549-565). Association for Computing Machinery. https://doi.org/10.1145/3490099.3511141

Chen, Z., Zhang, C., Zhao, Z., Yao, C., & Cai, D. (2018). Question retrieval for community-based question answering via heterogeneous social influential network. NEUROCOMPUTING, 285, 117-124. https://doi.org/10.1016/j.neucom.2018.01.034

Del Prete, L., & Capra, L. (2010). diffeRS: A mobile recommender service. In 2010 Eleventh International Conference on Mobile Data Management (pp. 21-26). IEEE. https://10.1109/MDM.2010.22

Dhelim, S., Aung, N., Bouras, M. A., Ning, H., & Cambria, E. (2022). A survey on personality-aware recommendation systems. Artificial Intelligence Review, 55(3), 2409-2454. https://doi.org/10.1007/s10462-021-10063-7

Dhelim, S., Chen, L., Aung, N., Zhang, W., & Ning, H. (2023). A hybrid personality-aware recommendation system based on personality traits and types models. Journal of Ambient Intelligence and Humanised Computing, 14(9), 12775-12788. https://doi.org/10.1007/s12652-022-04200-5

Donovan, J. O., Gretarsson, B., Bostandjiev, S., Hollerer, T., & Smyth, B. (2009). A Visual Interface for Social Information Filtering. In 2009 International Conference on Computational Science and Engineering (pp. 74-81). IEEE. https://doi.org/10.1109/CSE.2009.26

Ekstrand, M. D., Kluver, D., Harper, F. M., & Konstan, J. A. (2015). Letting Users Choose Recommender algorithms: an experimental study. In Proceedings of the 9th ACM Conference on Recommender Systems (pp. 11-18). Association for Computing Machinery. https://doi.org/10.1145/2792838.2800195

El-Kishky, A., Markovich, T., Park, S., Verma, C., Kim, B., Eskander, R., Malkov, Y., Portman, F., Samaniego, S., Xiao, Y., & Haghighi, A. (2022). TwHIN: Embedding the Twitter Heterogeneous Information Network for Personalised Recommendation. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 2842 - 2850). Association for Computing Machinery. https://doi.org/10.1145/3534678.3539080

Fang, H., Li, X., & Zhang, J. (2022). Integrating social influence modeling and user modeling for trust prediction in signed networks. Artificial Intelligence, 302, 103628. https://doi.org/10.1016/j.artint.2021.103628

Fernández-Tobías, I., Braunhofer, M., Elahi, M., Ricci, F., & Cantador, I. (2016). Alleviating the new user problem in collaborative filtering by exploiting personality information. User Modeling and User-Adapted Interaction, 26(2), 221-255. https://doi.org/10.1007/s11257-016-9172-z

Furutani, S., Shibahara, T., Akiyama, M., & Aida, M. (2023). Analysis of homophily effects on information diffusion on social networks. IEEE Access, 11, 79974-79983. https://doi.org/10.1109/ACCESS.2023.3299854

Gao, C., Zheng, Y., Li, N., Li, Y., Qin, Y., Piao, J., Quan, Y., Chang, J., Jin, D., He, X., & Li, Y. (2023). A survey of graph neural networks for recommender systems: challenges, methods, and directions. ACM Trans. Recomm. Syst., 1(1), Article 3. https://doi.org/10.1145/3568022

Ghahtarani, A., Sheikhmohammady, M., & Rostami, M. (2020). The impact of social capital and social interaction on customers’ purchase intention, considering knowledge sharing in social commerce context. Journal of Innovation & Knowledge, 5(3), 191-199. https://doi.org/10.1016/j.jik.2019.08.004

Guo, L., Sun, L., Jiang, R., Luo, Y., & Zheng, X. (2023). Recommendation based on attributes and social relationships. Expert Systems with Applications, 234, 121027. https://doi.org/10.1016/j.eswa.2023.121027

Hajarathaiah, K., Enduri, M. K., Anamalamudi, S., & Sangi, A. R. (2023). Algorithms for finding influential people with mixed centrality in social networks. Arabian Journal for Science and Engineering, 48(8), 10417-10428. https://doi.org/10.1007/s13369-023-07619-w

Hajian, B., & White, T. (2011). Modelling influence in a social network: metrics and evaluation. In Proceedings of IEEE third international conference on Privacy, security, risk and trust (passat) and 2011 ieee third international conference on social computing (socialcom) (pp. 497-500). IEEE. https://doi.org/10.1109/PASSAT/SocialCom.2011.118

Hassan, W. M., Al-Dbass, A., Al-Ayadhi, L., Bhat, R. S., & El-Ansary, A. (2022). Discriminant analysis and binary logistic regression enable more accurate prediction of autism spectrum disorder than principal component analysis. Scientific Reports, 12(1), 3764. https://doi.org/10.1038/s41598-022-07829-6

He, X., Zhang, Y., Feng, F., Song, C., Yi, L., Ling, G., & Zhang, Y. (2023). Addressing confounding feature issue for causal recommendation. ACM Trans. Inf. Syst., 41(3), Article 53. https://doi.org/10.1145/3559757

Hong, L., Yin, J., Xia, L.-L., Gong, C.-F., & Huang, Q. (2021). Improved short-video user impact assessment method based on pagerank algorithm. Intelligent Automation & Soft Computing, 29(2), 437-449. https://doi.org/10.32604/iasc.2021.016259

Huang, J.-T., Sharma, A., Sun, S., Xia, L., Zhang, D., Pronin, P., Padmanabhan, J., Ottaviano, G., & Yang, L. (2020). Embedding-based retrieval in facebook search. In Proceedings of the 26th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual Event (pp. 2553 - 2561). Association for Computing Machinery. https://doi.org/10.1145/3394486.3403305

Ilkou, E., Tolmachova, T., Fisichella, M., & Taibi, D. (2023). CollabGraph: a graph-based collaborative search summary visualization. IEEE Transactions on Learning Technologies, 16(3), 382-398. https://doi.org/10.1109/TLT.2023.3242174

Jain, G., Mahara, T., & Sharma, S. C. (2023). Performance evaluation of time-based recommendation system in collaborative filtering technique. Procedia Computer Science, 218, 1834-1844. https://doi.org/10.1016/j.procs.2023.01.161

Jain, L., Katarya, R., & Sachdeva, S. (2023). Opinion leaders for information diffusion using graph neural network in online social networks. ACM Transactions on the Web, 17(2), Article 13. https://doi.org/10.1145/3580516

Ji, J., Zhang, B., Yu, J., Zhang, X., Qiu, D., & Zhang, B. (2023). Relationship-aware contrastive learning for social recommendations. Information Sciences, 629, 778-797. https://doi.org/10.1016/j.ins.2023.02.011

Jia, M., Alboom, M. V., Goubert, L., Bracke, P., Gabrys, B., & Musial, K. (2022). Analysing egocentric networks via local structure and centrality measures: a study on chronic pain patients. In Proceedings of 2022 International Conference on Information Networking (pp. 152-157). IEEE. https://doi.org/10.1109/ICOIN53446.2022.9687278

Jiang, J., Ren, X., & Ferrara, E. (2023). Retweet-bert: political leaning detection using language features and information diffusion on social networks. In Proceedings of the International AAAI Conference on Web and Social Media (pp. 459-469), Association for the Advancement of Artificial Intelligence. https://doi.org/10.1609/icwsm.v17i1.22160

Jiang, L., Cheng, Y., Yang, L., Li, J., Yan, H., & Wang, X. (2019). A trust-based collaborative filtering algorithm for E-commerce recommendation system. Journal of Ambient Intelligence and Humanised Computing, 10(8), 3023-3034. https://doi.org/10.1007/s12652-018-0928-7

Jin, Y., Tintarev, N., Htun, N. N., & Verbert, K. (2019). Effects of personal characteristics in control-oriented user interfaces for music recommender systems. User Modeling and User-Adapted Interaction, 30, 199–249. https://doi.org/10.1007/s11257-019-09247-2

Keith, T. Z. (2014). Multiple regression and beyond. An introduction to multiple regression and structural equation modeling. Routledge.

Kluver, D., et al. (2017). Rating-Based Collaborative Filtering: Algorithms and Evaluation. In P. Brusilovsky & D. He (Eds.), Social Information Access (pp. 344–390). Springer. https://doi.org/10.1007/978-3-319-90092-6_10

Khanam, K. Z., Srivastava, G., & Mago, V. (2023). The homophily principle in social network analysis: a survey. Multimedia Tools and Applications, 82(6), 8811-8854. https://doi.org/10.1007/s11042-021-11857-1

Khitrov, A. (2019). Assessing the realism of police series: audience responses to the russian television series Glukhar’. Journal of Communication Inquiry, 43(1), 6-24. https://doi.org/10.1177/0196859918774799

Koybagarov, K. C., & Mansurova, M. Y. (2016). Automatic classification of reviews based on machine learning. Journal of Mathematics, Mechanics and Computer Science, 91(3), 66-74.

LeBlanc, P. M., Banks, D., Fu, L., Li, M., Tang, Z., & Wu, Q. (2024). Recommender systems: a review. Journal of the American Statistical Association, 119(545), 773-785. https://doi.org/10.1080/01621459.2023.2279695

Lee, D., & Brusilovsky, P. (2018). Social link-based recommendations: a review. In P. Brusilovsky & D. He (Eds.), Social Information Access (pp. 391-440). Springer.

Lee, D. H., & Brusilovsky, P. (2017). How to measure information similarity in online social networks: a case study of Citeulike. Information Sciences, 418-419, 46-60. https://doi.org/10.1016/j.ins.2017.07.034

Li, N., Gao, C., Jin, D., & Liao, Q. (2023). Disentangled modeling of social homophily and influence for social recommendation. IEEE Transactions on Knowledge and Data Engineering, 35(6), 5738-5751. https://doi.org/10.1109/TKDE.2022.3185388

Li, P., & Tuzhilin, A. (2023). Dual metric learning for effective and efficient cross-domain recommendations. IEEE Transactions on Knowledge and Data Engineering, 35(1), 321-334. https://doi.org/10.1109/TKDE.2021.3074395

Liu, H., Hu, Z., Mian, A., Tian, H., & Zhu, X. (2014). A new user similarity model to improve the accuracy of collaborative filtering. Knowledge-Based Systems, 56, 156-166. https://doi.org/10.1016/j.knosys.2013.11.006

Liu, L., Cheung, C. M. K., & Lee, M. K. O. (2016). An empirical investigation of information sharing behavior on social commerce sites. International Journal of Information Management, 36(5), 686-699. https://doi.org/10.1016/j.ijinfomgt.2016.03.013

Liu, Z., Yang, L., Fan, Z., Peng, H., & Yu, P. S. (2022). Federated social recommendation with graph neural network. ACM Trans. Intell. Syst. Technol., 13(4), Article 55. https://doi.org/10.1145/3501815

Loukachevitch, N. (2021). Automatic sentiment analysis of texts: the case of Russian. The Palgrave Handbook of Digital Russia Studies (pp. 501-516). Springer. https://doi.org/10.1007/978-3-030-42855-6_28

Ma, H. (2014). On measuring social friend interest similarities in recommender systems. In Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval (pp. 465-474). Association for Computing Machinery. https://doi.org/10.1145/2600428.2609635

Mahtar, S., Masrom, S., Omar, N., Khairudin, N., Rahim, S., & Rizman, Z. (2017). Trust aware recommender system with distrust in different views of trusted users. Journal of Fundamental and Applied Sciences, 9(5S), 168-182. https://doi.org/10.4314/jfas.v9i5s.13

Mi, C., Ruan, X., & Xiao, L. (2022). Microblog sentiment analysis using user similarity and interaction-based social relations. In I. R. Management Association (Ed.), Research Anthology on Implementing Sentiment Analysis Across Multiple Disciplines (pp. 1887-1904). IGI Global. https://doi.org/10.4018/978-1-6684-6303-1.ch100

Millecamp, M., Htun, N. N., Conati, C., & Verbert, K. (2019). To explain or not to explain: the effects of personal characteristics when explaining music recommendations. In Proceedings of the 24th International Conference on Intelligent User Interfaces (pp. 397-407). Assoication for Computing Machinery. https://doi.org/10.1145/3301275.3302313

Moe, W. W., & Trusov, M. (2011). The value of social dynamics in online product ratings forums. Journal of Marketing Research, 48(3), 444-456. https://doi.org/10.1509/jmkr.48.3.444

Monge, P. R., & Contractor, N. S. (2003). Theories of communication networks. Oxford University Press.

Newman, M. E. J. (2004). Coauthorship networks and patterns of scientific collaboration. Proceedings of the National Academy of Sciences, 101(suppl 1), 5200-5205. https://doi.org/10.1073/pnas.0307545100

O'Donovan, J., Smyth, B., Gretarsson, B., Bostandjiev, S., & Höllerer, T. (2008). PeerChooser: visual interactive recommendation. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1085-1088). Assoication for Computing Machinery. https://doi.org/10.1145/1357054.1357222

Peng, Y., Zhao, Y., & Hu, J. (2023). On the role of community structure in evolution of opinion formation: a new bounded confidence opinion dynamics. Information Sciences, 621, 672-690. https://doi.org/10.1016/j.ins.2022.11.101

Quadrana, M., Cremonesi, P., & Jannach, D. (2018). Sequence-aware recommender systems. ACM Computing Surveys, 51(4), 1-36. https://doi.org/10.1145/3190616

Ramezani, M., Akhlaghian Tab, F., Abdollahpouri, A., & Abdulla Mohammad, M. (2021). A new generalised collaborative filtering approach on sparse data by extracting high confidence relations between users. Information Sciences, 570, 323-341. https://doi.org/10.1016/j.ins.2021.04.025

Rodzin, S., Rodzina, O., & Rodzina, L. (2020). Bio-inspired collaborative and content filtering method for online recommendation assistant systems. In Proceedings of the 9th Computer Science On-line Conference (pp. 110-119). Springer. https://doi.org/10.1007/978-3-030-51971-1_9

Rostami, M., Oussalah, M., Berahmand, K., & Farrahi, V. (2023). Community detection algorithms in healthcare applications: a systematic review. IEEE Access, 11, 30247-30272. https://doi.org/10.1109/ACCESS.2023.3260652

Sahebi, S., & Brusilovsky, P. (2013). Cross-domain collaborative recommendation in a cold-start context: the impact of user profile size on the quality of recommendation. In Proceedings of User Modeling, Adaptation, and Personalization (pp. 289-295). Springer. https://doi.org/10.1007/978-3-642-38844-6_25

Sciascio, C. d., Brusilovsky, P., & Veas, E. (2018). A study on user-controllable social exploratory search. In Proceedings of 23rd International Conference on Intelligent User Interfaces (pp. 353-364), Assoication for Computing Machinery. https://doi.org/10.1145/3172944.3172986

Sharapov, R. V., Varlamov, A. D., & Sharapova, E. V. (2019). Method for sentiment text analysis based on statistical and semantic properties of words. In Proceedings of 2019 International Russian Automation Conference (pp. 1-6). IEEE. https://doi.org/10.1109/RUSAUTOCON.2019.8867775

Srivastava, A., Bala, P. K., & Kumar, B. (2019). New perspectives on gray sheep behavior in E-commerce recommendations. Journal of Retailing and Consumer Services, 53, 1-11. https://doi.org/10.1016/j.jretconser.2019.02.018

Sun, R., Akella, A., Kong, R., Zhou, M., & Konstan, J. A. (2023). Interactive content diversity and user exploration in online movie recommenders: a field experiment. International Journal of Human–Computer Interaction, 40(22), 1-15. https://doi.org/10.1080/10447318.2023.2262796

Sun, R., An, L., Li, G., & Yu, C. (2022). Predicting social media rumours in the context of public health emergencies. Journal of Information Science, 2022, 1-16. https://doi.org/10.1177/01655515221137879

Takeda, Y., & Kajikawa, Y. (2010). Tracking modularity in citation networks. Scientometrics, 83(3), 783-792. https://doi.org/10.1007/s11192-010-0158-z

Thorat, S. A., Ashwini, G., & Seema, M. (2023). Survey on collaborative and content-based recommendation systems. In Proceedings of 2023 5th International Conference on Smart Systems and Inventive Technology (pp. 1541-1548). IEEE. https://doi.org/10.1109/ICSSIT55814.2023.10061072

Tkalcic, M., & Chen, L. (2015). Personality and recommender systems. In Recommender systems handbook (pp. 715-739). Springer.

Tsai, C.-H., & Brusilovsky, P. (2021). The effects of controllability and explainability in a social recommender system. User Modeling and User-Adapted Interaction, 31(3), 591-627. https://doi.org/10.1007/s11257-020-09281-5

Tsugawa, S., & Watabe, K. (2023). Identifying influential brokers on social media from social network structure. In Proceedings of the International AAAI Conference on Web and Social Media (pp. 842-853). Association for the Advancement of Artificial Intelligence. https://doi.org/10.1609/icwsm.v17i1.22193

Unger, M., Li, P., Sen, S., & Tuzhilin, A. (2023). Don’t Need All Eggs in One Basket: Reconstructing Composite Embeddings of Customers from Individual-Domain Embeddings. ACM Transactions on Management Information Systems, 14(2), Article 20. https://doi.org/10.1145/3578710

Wu, W. (2017). Implicit acquisition of user personality for augmenting recommender systems. In Proceedings of the 22nd International Conference on Intelligent User Interfaces Companion (pp. 201-204). Assoication for Computing Machinery. https://doi.org/10.1145/3030024.3038287

Xu, K., Zheng, X., Cai, Y., Min, H., Gao, Z., Zhu, B., Xie, H., & Wong, T.-L. (2018). Improving user recommendation by extracting social topics and interest topics of users in uni-directional social networks. Knowledge-Based Systems, 140, 120-133. https://doi.org/10.1016/j.knosys.2017.10.031

Yin, F., Xia, X., Pan, Y., She, Y., Feng, X., & Wu, J. (2022). Sentiment mutation and negative emotion contagion dynamics in social media: a case study on the Chinese Sina microblog. Information Sciences, 594, 118-135. https://doi.org/10.1016/j.ins.2022.02.029

Yuan, S., Zhang, Y., Tang, J., Hall, W., & Cabotà, J. B. (2020). Expert finding in community question answering: a review. Artificial Intelligence Review, 53(2), 843-874. https://doi.org/10.1007/s10462-018-09680-6

Zhao, J., Wang, W., Zhang, Z., Sun, Q., Huo, H., Qu, L., & Zheng, S. (2020). TrustTF: a tensor factorization model using user trust and implicit feedback for context-aware recommender systems. Knowledge-Based Systems, 209, 106434. https://doi.org/10.1016/j.knosys.2020.106434

Zhong, C., Xiong, F., Pan, S., Wang, L., & Xiong, X. (2023). Hierarchical attention neural network for information cascade prediction. Information Sciences, 622, 1109-1127. https://doi.org/10.1016/j.ins.2022.11.163

Zhu, H., Wei, H., & Wei, J. (2023). Understanding users’ information dissemination behaviors on Douyin, a short video mobile application in China. Multimedia Tools and Applications, 83, 58225–58243. https://doi.org/10.1007/s11042-023-17831-3

Published

2025-10-15

How to Cite

Lee, D., & Brusilovsky, P. (2025). Cui bono? Who benefits from leveraging information behaviour of their online social connections?. Information Research an International Electronic Journal, 30(3), 93–117. https://doi.org/10.47989/ir30354555

Issue

Section

Peer-reviewed papers

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.