Designing a business intelligence-based monitoring platform for evaluating research collaborations within university networks: the case of UNICA - the Network of Universities from the Capitals of Europe.

Authors

  • Muhammet Damar Dokuz Eylul University
  • Güzin Özdağoğlu Dokuz Eylul University
  • Luciano Saso Sapienza University of Rome

DOI:

https://doi.org/10.47989/irpaper945

Keywords:

business intelligence, competitive intelligence, environmental scanning, decision-support systems, bibliometrics, co-authorship, collaboration, unica, scientific information, universities

Abstract

Introduction. The scope of the study is to provide decision support for academic networks to reveal the efficiency of the collaborations among the researchers. This research proposes a monitoring environment to evaluate collaboration patterns in all research areas and foster innovative, interdisciplinary, and international research.

Method. The paper presents a novel application framework for the Network of the Universities from the Capitals of Europe (UNICA) based on business intelligence. The framework is applied by analysing co-authorships through data from the Web of Science (2015 and 2020).

Analysis. Co-authorships between member universities are queried from the large-scale bibliographic data. A new bibliometric data warehouse is created with the integrated use of database operations with text analytics. Dashboards associated with the data warehouse contain many performance indicators and statistics based on interactive filters.

Results. The findings cover many features of the monitoring environment and statistics in various research domains (Life Science and Biomedicine, Physical Sciences, Technology, Social Sciences, Arts, and Humanities). User-friendly geographical maps visualized the most significant collaborations in various domains.

Conclusions. The study provides an intellectual contribution by revealing the differences in collaboration levels of the research areas and indicating the policy requirements to close these gaps.

References

Abramo, G., D’Angelo, C. A., Di Costa, F., & Solazzi, M. (2009). University-industry collaboration in Italy: a bibliometric examination. Technovation, 29(6-7), 498-507. https://doi.org/10.1016/j.technovation.2008.11.003

Akakandelwa, A. (2009). Author collaboration and productivity at the University of Zambia, 2002-2007. African Journal of Library, Archives & Information Science, 19(1), 13-23. https://doi.org/10.1007/s11192-011-0552-1

Ardanuy, J. (2012). Scientific collaboration in library and information science viewed through the Web of Knowledge: The Spanish case. Scientometrics, 90(3), 877-890. https://doi.org/10.1007/s11192-011-0552-1.

Benckendorff, P. (2010). Exploring the limits of tourism research collaboration: A social network analysis of co-authorship patterns in Australian and New Zealand tourism research. In CAUTHE 2010. Official proceedings of the 20th annudal CAUTHE conference “Tourism and hospitality: Challenge the limits”, 8-11 February 2010, Hobart, Tasmania, Australia, (pp.151-174). CAUTHE.

Björneborn, L., & Ingwersen, P. (2004). Toward a basic framework for webometrics. Journal of the American Society for Information Science and Technology, 55(14), 1216-1227. https://doi.org/10.1002/asi.20077

Chen, K., Zhang, Y., & Fu, X. (2019). International research collaboration: an emerging domain of innovation studies? Research Policy, 48(1), 149-168. https://doi.org/10.1016/j.respol.2018.08.005

Cheng, M. Y., Hen, K. W., Tan, H. P., & Fok, K. F. (2013). Patterns of co-authorship and research collaboration in Malaysia. In Aslib Proceedings: New Information Perspectives, 65(6) 659-674. https://doi.org/10.1108/ap-12-2012-0094

Chung, W., & Zeng, D. (2016). Social‐media‐based public policy informatics: Sentiment and network analyses of US Immigration and border security. Journal of the Association for Information Science and Technology, 67(7), 1588-1606. https://doi.org/10.1002/asi.23449

Chung, W., Chen, H., & Reid, E. (2009). Business stakeholder analyzer: An experiment of classifying stakeholders on the Web. Journal of the American Society for Information Science and Technology, 60(1), 59-74. https://doi.org/10.1002/asi.20948

CrossRef, (2022). About us. https://www.crossref.org/about/ (Internet Archive).

Cunningham, S. J., & Dillon, S. M. (1997). Authorship patterns in information systems. Scientometrics, 39(1), 19-27. https://doi.org/10.1007/BF02457428

Daniel, B. (2015). Big data and analytics in higher education: Opportunities and challenges. British Journal of Educational Technology, 46(5), 904-920. https://doi.org/10.1111/bjet.12230

Dunning, J. (2000). Regions, globalisation & the knowledge-based economy. Oxford University Press.

Elango, B., & Rajendran, P. (2012). Authorship trends and collaboration pattern in the marine sciences literature: a scientometric study. International Journal of Information Dissemination and Technology, 2(3), 166-169.

Elena, C. (2011). Business intelligence. Journal of Knowledge Management, Economics, and Information Technology, 1(2), 1-12.

Elsevier. (2022). Why you need a research information management system (RIMS). https://www.elsevier.com/research-intelligence/rims-and-cris-systems. (Internet Archive).

EuroCRIS, (2022). Membership information. https://eurocris.org/membership-information. (Internet Archive).

Foley, É., & Guillemette, M. G. (2010). What is business intelligence? International Journal of Business Intelligence Research, 1(4), 1-28. https://doi.org/10.4018/jbir.2010100101

Garfield, E. (2009). From the science of science to Scientometrics visualizing the history of science with HistCite software. Journal of Informetrics, 3(3), 173-179. https://doi.org/10.1016/j.joi.2009.03.009

Glänzel W., & Schubert A. (2004). Analysing scientific networks through co-authorship. In H.F. Moed, W. Glänzel, & U. Schmoch, (Eds.). Handbook of quantitative science and technology research (pp. 257-277). Springer. https://doi.org/10.1007/1-4020-2755-9_12

Glanzel, W. (2018). Introduction to bibliometric data sources. In Proceedings 2nd International Summer School. Modern trends in science: scientometrics, September 26-29, Yerevan, Armenia. (21 pp.). http://csiamconf2018.sci.am/lec/Data%20sources.pdf. (Internet Archive).

Hicks, D., & Katz, J.S. (1996). Science policy for a highly collaborative science system. Science and Public Policy, 23(1), 39-44. https://doi.org/10.1093/spp/23.1.39

Hood, W.W., & Wilson, C.S. (2001). The literature of bibliometrics, scientometrics, and informetrics. Scientometrics, 52(2), 291-314. https://doi.org/10.1023/a:1017919924342

Hou, H., Kretschmer, H., & Liu, Z. (2008). The structure of scientific collaboration networks in Scientometrics. Scientometrics, 75(2), 189-202. https://doi.org/10.1007/s11192-007-1771-3

Inzelt, A., Schubert, A., & Schubert, M. (2009). Incremental citation impact due to international co-authorship in Hungarian higher education institutions. Scientometrics, 78(1), 37-43. https://doi.org/10.1007/s11192-007-1957-8

Jacobs, D. (2010). Demystification of bibliometrics, scientometrics, informetrics and webometrics. In D.N. Ochola and N. Evans, (Eds.). Proceedings of DLIS 11th Annual Conference “Demistifying and popularising LIS research in modern times”, 2-3 September, Richardsbay, University of Zululand, South Africa (pp. 30-43). University of Zululand.

Katz, J.S., & Martin, B.R. (1997). What is research collaboration? Research policy, 26(1), 1-18. https://doi.org/10.1016/S0048-7333(96)00917-1

Khaparde, V., & Pawar, S. (2013). Authorship pattern and degree of collaboration in Information Technology. Journal of Computer Science & Information Technology, 1(1), 46-54. https://doi.org/10.1.1.1038.8171

Khasseh, A.A., Soheili, F., & Chelak, A.M. (2017). Co-authorship network analysis of iMetrics researchers. Library Philosophy and Practice . https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=4256&context=libphilprac.

Koseoglu, M. A., Okumus, F., Putra, E. D., Yildiz, M., & Dogan, I. C. (2018). Authorship trends, collaboration patterns, and co-authorship networks in lodging studies (1990-2016). Journal of Hospitality Marketing & Management, 27(5), 561-582. https://doi.org/10.1080/19368623.2018.1399192

Kumar, S. (2015). Co-authorship networks: a review of the literature. Aslib Journal of Information Management, 67(1), 55-73. https://doi.org/10.1108/AJIM-09-2014-0116

Lariviere, V., Gingras, Y., & Archambault, É. (2006). Canadian collaboration networks: a comparative analysis of the natural sciences, social sciences, and the humanities. Scientometrics, 68(3), 519-533. https://doi.org/10.1007/s11192-006-0127-8

Leydesdorff, L., & Persson, O. (2010). Mapping the geography of science: Distribution patterns and networks of relations among cities and institutes. Journal of the American Society for Information Science and Technology, 61(8), 1622-1634. https://doi.org/10.1002/asi.21347

Leydesdorff, L., & Wagner, C.S. (2008). International collaboration in science and the formation of a core group. Journal of Informetrics, 2(4), 317-325. https://doi.org/10.1016/j.joi.2008.07.003

Liu, X., Guo, C., & Zhang, L. (2014). Scholar metadata and knowledge generation with human and artificial intelligence. Journal of the Association for Information Science and Technology, 65(6), 1187-1201. https://doi.org/10.1002/asi.23013

Lundberg, J., Tomson, G., Lundkvist, I., Skr, J., & Brommels, M. (2006). Collaboration uncovered: exploring the adequacy of measuring university-industry collaboration through co-authorship and funding. Scientometrics, 69(3), 575-589. https://doi.org/10.1007/s11192-006-0170-5

Macfadyen, L.P., Dawson, S., Pardo, A., & Gaševic, D. (2014). Embracing big data in complex educational systems: The learning analytics imperative and the policy challenge. Research & Practice in Assessment, 9, 17-28.

McCoy, C., & Rosenbaum, H. (2019). Uncovering unintended and shadow practices of users of decision support system dashboards in higher education institutions. Journal of the Association for Information Science and Technology, 70(4), 370-384. https://doi.org/10.1002/asi.24131

Melin, G. (2000). Pragmatism and self-organization: Research collaboration on the individual level. Research policy, 29(1), 31-40. https://doi.org/10.1016/S0048-7333(99)00031-1

Melin, G., & Persson, O. (1996). Studying research collaboration using co-authorships. Scientometrics, 36(3), 363-377. https://doi.org/10.1007/bf02129600

Miller, G. (2011). Social scientists wade into the Tweet stream. Science, 333(2011), 1814-1815.https://doi.org/10.1126/science.333.6051.1814

Mohammadamin, E., Ali, R. V., & Abrizah, A. (2017). Co-authorship network of scientometrics research collaboration. Malaysian Journal of Library & Information Science, 17(3), 73-93.

Nikzad, M., Jamali, H. R., & Hariri, N. (2011). Patterns of Iranian co-authorship networks in social sciences: A comparative study. Library & Information Science Research, 33(4), 313-319. https://doi.org/10.1016/j.lisr.2011.01.005

Olmeda‐Gómez, C., Perianes‐Rodriguez, A., Ovalle‐Perandones, M.A., Guerrero‐Bote, V.P., & de Moya Anegón, F. (2009). Visualization of scientific co‐authorship in Spanish universities. Aslib Proceedings, 61(1), 83-100. https://doi.org/10.1108/00012530910932302

Olsen, J. P. (2014). Accountability and ambiguity. In M. Bovens, R.E. Goodin, & T. Schillemans (Eds.). The Oxford handbook of public accountability (pp. 10-124). Oxford University Press.

Osinska, V., & Klimas, R. (2021). Mapping science: tools for bibliometric and altmetric studies. Information Research, 26(4), paper 909. https://doi.org/10.47989/irpaper909.

Özel, C., Ersoy, B., & Arus, O. (2020). Akademik değerlendirme ürünleri: InCites ve SciVal. [Academic assessment products: InCites and SciVal]. Türk Kütüphaneciliği, 34(2), 275-284.

Perianes-Rodríguez, A., Olmeda-Gómez, C., & Moya-Anegón, F. (2010). Detecting, identifying, and visualizing research groups in co-authorship networks. Scientometrics, 82(2),307-319. https://doi.org/0.1007/s11192-009-0040-z

Pham, Q. T., Mai, T. K., Misra, S., Crawford, B., & Soto, R. (2016). Critical success factors for implementing business intelligence system: empirical study in Vietnam. In International Conference on Computational Science and Its Applications (pp. 567-584). Springer. https://doi.org/10.1007/978-3-319-42092-9_43

Ponomariov, B., & Boardman, C. (2016). What is co-authorship? Scientometrics, 109(3), 1939-1963. https://doi.org/10.1007/s11192-016-2127-7

Popovič, A., Coelho, P. S., & Jaklič, J. (2009). The impact of business intelligence system maturity on information quality. Information Research, 14(4), paper 417. http://informationr.net/ir/14-4/paper417.html. (Internet Archive)

Pouris, A., & Ho, Y. S. (2014). Research emphasis and collaboration in Africa. Scientometrics, 98(3), 2169-2184. https://doi.org/10.1007/s11192-013-156-8

Rotolo, D., Rafols, I., Hopkins, M. M., & Leydesdorff, L. (2017). Strategic intelligence on emerging technologies: Scientometric overlay mapping. Journal of the Association for Information Science and Technology, 68(1), 214-233. https://doi.org/10.1002/asi.23631

Schlattmann, S. (2017). Capturing the collaboration intensity of research institutions using social network analysis. Procedia Computer Science, 106, 25-31. https://doi.org/10.1016/j.procs.2017.03.005

Schmidt, J. (2007). Knowledge politics of interdisciplinarity. Specifying the type of interdisciplinarity in the NSF’s NBIC scenario. Innovation: The European Journal of Social Science Research, 20(4), 313-328. https://doi.org/10.1080/13511610701760721

Sharda R., Delen, D., & Turban, E. (2015). Business intelligence and analytics: systems for decision support. 10th Edition. Pearson,

Shotton, D., Portwin, K., Klyne, G., & Miles, A. (2009). Adventures in semantic publishing: Exemplar semantic enhancements of a research article. Plos Computational Biology, 5(4), e1000361. https://doi.org/10.1371/journal.pcbi.1000361

Sivertsen, G. (2019). Developing Current Research Information Systems (CRIS) as data sources for studies of research. In: Glänzel, W., Moed, H.F., Schmoch, U., Thelwall, M. (eds) Springer handbook of science and technology indicators, (pp. 667-683). Springer. https://doi.org/10.1007/978-3-030-02511-3_25

Skolnikoff, E.B. (1993). The elusive transformation: science, technology and the evolution of international politics. Princeton University Press.

Skyrius, R., Nemitko, S., & Talocka, G. (2018). The emerging role of business intelligence culture. Information Research, 23(4), paper 806. http://informationr.net/ir/23-4/paper806.html. (Internet Archive)

Song, X., Chi, Y., Hino, K., & Tseng, B. (2007, November). Identifying opinion leaders in the blogosphere. In M.J. Silva, A.A.F. Laender, R. Baeza-Yates, D.L. McGuinness, B. Olstad, Ø.H. Olsen, & A.O. Falcão, (Eds.). CIMK2007: Proceedings of the 16th ACM Conference on Conference on Information and Knowledge Management, November 6-8, 2007, Lisboa, Portugal, (pp.971-974). Association for Computing Machinery.

Stehr, N. (2005). Knowledge politics: governing the consequences of science and technology. Routledge.

Tang, L., & Shapira, P. (2011). China–US scientific collaboration in nanotechnology: patterns and dynamics. Scientometrics, 88(1), 1-16. https://doi.org/10.1007/s11192-011-0376-z

Tsai, C.C., Corley, E.A., & Bozeman, B. (2016). Collaboration experiences across scientific disciplines and cohorts. Scientometrics, 108(2), 505-529. https://doi.org/10.1007/s11192-016-1997-z

UNICA, (2021). Network of universities from the capitals of Europe. https://www.unica-network.eu/. (Internet Archive).

Velden, T., Haque, A. U., & Lagoze, C. (2010). A new approach to analyzing patterns of collaboration in co-authorship networks: mesoscopic analysis and interpretation. Scientometrics, 85(1), 219-242. https://doi.org/10.1007/s11192-010-0224-6

Wagner, C. S., & Leydesdorff, L. (2005). Mapping the network of global science: comparing international co-authorships from 1990 to 2000. International Journal of Technology and Globalisation, 1(2), 185-208. https://doi.org/10.1504/ijtg.2005.007050

Wagner, C. S., Whetsell, T. A., & Mukherjee, S. (2019). International research collaboration: Novelty, conventionality, and atypicality in knowledge recombination. Research Policy, 48(5), 1260-1270. https://doi.org/10.1016/j.respol.2019.01.002

Williamson, B. (2016). Digital education governance: Data visualization, predictive analytics, and ‘real-time’ policy instruments. Journal of Education Policy, 31(2), 123-141. https://doi.org/10.1080/02680939.2015.1035758

Clarivative Analytics. (2021). Web of Science core collections help: research areas. https://bit.ly/3DSSpNY. (Internet Archive).

Yang, S., & Yuan, Q. (2017). Are scientometrics, informetrics, and bibliometrics different? In J. Qiu, R. Rousseau, C.R. Sugimoto, & F. Xin, (Eds.). Proceedings of the 16th International Conference on Scientometrics and Informetrics, ISSI 2017, Wuhan, China, October 16-20, 2017 (pp.107-1518). ISSI Society.

Zeng, D., Chen, H., Castillo-Chavez, C., Lober, W.B., & Thurmond, M., (Eds.). (2010). Infectious disease informatics and biosurveillance. Springer Science & Business Media.

Zhang, J., Ackerman, M.S., & Adamic, L. (2007). Expertise networks in online communities: structure and algorithms. In WWW '07: Proceedings of the 16th international conference on World Wide Web, 2007, 08-12 May, 2007, Banff, Alberta, Canada, (pp.221-230). Association for Computing Machinery. https://doi.org/10.1145/1242572.1242603

Downloads

Published

2022-12-15

How to Cite

Damar, M., Özdağoğlu, G., & Saso, L. (2022). Designing a business intelligence-based monitoring platform for evaluating research collaborations within university networks: the case of UNICA - the Network of Universities from the Capitals of Europe. Information Research an International Electronic Journal, 27(4). https://doi.org/10.47989/irpaper945

Issue

Section

Peer-reviewed papers

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.