Mapping open science research using a keyword bibliographic coupling analysis network

Authors

  • Jae Yun Lee Myongji University, Department of Library and Information Science
  • EunKyung Chung Ewha Womans University, Department of Library and Information Science

DOI:

https://doi.org/10.47989/irpaper949

Keywords:

open science, domain analysis, network analysis, keyword coupling anlaysis

Abstract

Introduction: The open science movement has grown rapidly since the mid-2010s, and research has been conducted in various disciplines such as public health, medicine, education, and computer science. Research results have mainly been published in the journals of information science, computer science, and multidisciplinary fields.

Method: To identify the intellectual structure of open science, we constructed a keyword bibliographic coupling analysis network. We examined a total of 1,000 articles on open science from the Web of Science, extracting and analysing 4,645 keywords. Then, we implemented and visualised the keyword bibliographic coupling network by constructing a keyword dataset and a reference dataset for each keyword.

Results: By analysing the backbone keywords and clusters in the network, the study revealed that the most prominent keywords were open accessopen data, and reproducibility. The analysis also uncovered nine clusters in open science research: open access, reproducibility, data sharing, preregistrations and registered reports, research data, open peer review, tools and platforms for reproducible research, open innovation, science policy, and preprints. These results indicated that open science research focuses on transparency and reproducibility. Additionally, it is noteworthy that this study revealed a considerable focus on the open innovation and science policy areas, which have not received much attention in previous studies.

Conclusions: The findings can help to understand the landscape of open science research and may guide research funding institutes and research policymakers to design their policies to improve the open science scholarly environment.

References

Aarts, A.A., Anderson, J.E., Anderson, C.J., Attridge, P.R., Attwood, A., Axt, J., Babel, M., Bahník, Š., Baranski, E., Barnett-Cowan, M., Bartmess, E., Beer, J., Bell, R., Bentley, H., Beyan, L., Binion, G., Borsboom, D., Bosch, A., Bosco, F.A., ... & Zuni, K. (2015). Estimating the reproducibility of psychological science. Science, 349(6251) https://doi.org/10.1126/science.aac4716

Baker, M. (2016). 1,500 scientists lift the lid on reproducibility. Nature, 533(7604), 452-454. https://doi.org/10.1038/533452a

Borgman, C.L. (2012). The conundrum of sharing research data. Journal of the American Society for Information Science and Technology, 63(6), 1059-1078. https://doi.org/10.1002/asi.22634

Borgman, C.L. (2015). Big data, little data, no data: Scholarship in the networked world. MIT press.

Bourne, P.E., Polka, J.K., Vale, R.D., & Kiley, R. (2017). Ten simple rules to consider regarding preprint submission. PLOS Computational Biology, 13(5), e1005473. https://doi.org/10.1371/journal.pcbi.1005473

Chesbrough, H.W. (2003). Open innovation: The new imperative for creating and profiting from technology. Harvard Business Press.

Cook, B.G., Lloyd, J.W., Mellor, D., Nosek, B.A., & Therrien, W. J. (2018). Promoting open science to increase the trustworthiness of evidence in special education. Exceptional Children, 85(1), 104-118. https://doi.org/10.1177/0014402918793138

Ember, L.R. (1982). Open Science V. National-Security. Chemistry & Industry. 15, 506.

Fecher, B., & Friesike, S. (2014). Open science: one term, five schools of thought. In. S. Bartling, and S. Friesike (Eds.), Opening science: The Evolving Guide on How the Internet is Changing Research, Collaboration and Scholarly Publishing (pp. 17-47). Springer. https://doi.org/10.1007/978-3-319-00026-8_2

Ferguson, C.J., & Heene, M. (2012). A vast graveyard of undead theories: Publication bias and psychological science’s aversion to the null. Perspectives on Psychological Science, 7(6), 555-561. https://doi.org/10.1177/1745691612459059

Kerr, N.L. (1998). HARKing: Hypothesizing after the results are known. Personality and social psychology review, 2(3), 196-217. https://doi.org/10.1207/s15327957pspr0203_4

Kim, H., & Lee, J.Y. (2008). Exploring the emerging intellectual structure of archival studies using text mining: 2001-2004. Journal of Information Science, 34(3), 356-369. https://doi.org/10.1177/0165551507086260

Larivière, V., Haustein, S., & Mongeon, P. (2015). The oligopoly of academic publishers in the digital era. PloS one, 10(6), e0127502. https://doi.org/10.1371/journal.pone.0127502

Lee, J.Y. (2006). A novel clustering method for examining and analyzing the intellectual structure of a scholarly field. Journal of the Korean Society for Information Management, 23(4), 215-231. http://doi.org/10.3743/KOSIM.2006.23.4.215

Lee, J.Y. (2008). Bibliographic author coupling analysis: A new methodological approach for identifying research trends. Journal of the Korean Society for Information Management, 25(1), 173-190. https://doi.org/10.3743/KOSIM.2008.25.1.173

Lee, J.Y., & Chung, E. (2022). Introducing keyword bibliographic coupling analysis(KBCA) for identifying the intellectual structure. Journal of the Korean Society for Information Management, 39(1), 309-330. https://doi.org/10.3743/KOSIM.2022.39.1.309

Levin, N., Leonelli, S., Weckowska, D., Castle, D., & Dupré, J. (2016). How do scientists define openness? Exploring the relationship between open science policies and research practice. Bulletin of Science, Technology & Society, 36(2). 128-141. https://doi.org/10.1177/0270467616668760

Maggin, D.M. (2021). Journal Editor and Associate Editor Perspectives on Research Reproducibility and Open Science. Remedial and Special Education, 43(3), 135-146. https://doi.org/10.1177/07419325211017294

McKiernan, E.C., Bourne, P. E., Brown, C. T., Buck, S., Kenall, A., Lin, J., McDougall, D., Nosek, B.A., Ram, K., Soderberg, C.K., Spies, J.R., Thaney, K. Updegrove, A., Woo, K.H., & Yarkoni, T. (2016). Point of view: How open science helps researchers succeed. elife, 5, e16800. https://doi.org/10.7554/eLife.16800

Mirowski, P. (2018). The future(s) of open science. Social Studies of Science, 48(2), 171-203. https://doi.org/10.1177/0306312718772086

Muralimanohar, J., & Jaianand, K. (2011). Determination of Effectiveness of the ‘Square Root of N Plus One’ Rule in Lot Acceptance Sampling Using an Operating Characteristic Curve. The Quality Assurance Journal, 14(1-2), 33-37. https://doi.org/10.1002/qaj.482

Nosek, B.A., & Lakens, D. (2014). Registered reports: A method to increase the credibility of published results. Social Psychology, 45(3), 137-141. https://doi.org/10.1027/1864-9335/a000192

Nosek, B.A., Alter, G., Banks, G. C., Borsboom, D., Bowman, S. D., Breckler, S. J., Buck, S., Chambers, C.D., Chin. G., Christensen, G., Contestabilea, M., Dafoe, A. Eich, E., Freeser, J. Glennersterd, R., Goroff, D., Green, D.P., Hesse, B., Humphreys, M.,... & Yarkoni, T. (2015). Promoting an open research culture. Science, 348(6242), 1422-1425. https://doi.org/10.1126/science.aab2374

Ogungbeni, J.I., Obiamalu, A.R., Ssemambo, S., & Bazibu, C.M. (2018). The roles of academic libraries in propagating open science: A qualitative literature review. Information Development, 34(2), 113-121. https://doi.org/10.1177/0266666916678444

Partha, D., & David, P.A. (1994). Toward a new economics of science. Research policy, 23(5), 487-521. https://doi.org/10.1016/0048-7333(94)01002-1

Peng, R.D. (2011). Reproducible research in computational science. Science, 334(6060), 1226-1227. https://doi.org/10.1126/science.1213847

Piwowar, H.A. (2011). Who shares? Who doesn't? Factors associated with openly archiving raw research data. PloS one, 6(7), e18657. https://doi.org/10.1371/journal.pone.0018657

Piwowar, H., Priem, J., Larivière, V., Alperin, J. P., Matthias, L., Norlander, B., Farley, A., West, J., & Haustein, S. (2018). The state of OA: a large-scale analysis of the prevalence and impact of Open Access articles. PeerJ, 6, e4375. https://doi.org/10.7717/peerj.4375

Ross-Hellauer, T. (2017a). What is open peer review? A systematic review. F1000Research, 6. https://doi.org/10.12688/f1000research.11369.2

Ross-Hellauer, T., Deppe, A., & Schmidt, B. (2017b). Survey on open peer review: Attitudes and experience amongst editors, authors and reviewers. PloS one, 12(12), e0189311. https://doi.org/10.1371/journal.pone.0189311

Sandve, G.K., Nekrutenko, A., Taylor, J., & Hovig, E. (2013). Ten simple rules for reproducible computational research. PLoS computational biology, 9(10), e1003285. https://doi.org/10.1371/journal.pcbi.1003285

Schvaneveldt, R.W. (1990). Pathfinder associative networks: Studies in knowledge organizations. Ablex Publishing.

Simmons, J.P., Nelson, L.D., & Simonsohn, U. (2011). False-Positive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychological Science, 22(11), 1359-1366. https://doi.org/10.1177/0956797611417632

Tennant, J.P., Dugan, J.M., Graziotin, D., Jacques, D.C., Waldner, F., Mietchen, D., Elkhatib, Y., Collister, L.B., Pikas, C.K., Crick, T., Masuzzo, P., Caravaggi, A., Berg, D.R., Niemeyer, K.E., Ross-Hellauer, T., Mannheimer, S., Rigling, L., Katz, D.S., Tzovaras, B.G.... & Colomb, J. (2017). A multi-disciplinary perspective on emergent and future innovations in peer review. F1000Research, 6. https://doi.org/10.12688/f1000research.12037.2

Tenopir, C., Allard, S., Douglass, K., Aydinoglu, A.U., Wu, L., Read, E., Manoff, M., & Frame, M. (2011). Data sharing by scientists: practices and perceptions. PloS one, 6(6), e21101. https://doi.org/10.1371/journal.pone.0021101

Vicente-Sáez, R., & Martínez-Fuentes, C. (2018). Open Science now: A systematic literature review for an integrated definition. Journal of Business Research, 88, 428-436. https://doi.org/10.1016/j.jbusres.2017.12.043

Whyte, A., & Pryor, G. (2011). Open science in practice: Researcher perspectives and participation. The International Journal of Digital Curation, 1(6), 199-213. https://doi.org/10.2218/ijdc.v6i1.182

Wilkinson, M., Dumontier, M., Aalbersberg, I., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J., Bonino da Silva Santos, L.O., Bourne, P.E., Bouwman, J., Brookes, A.J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, T.E., Finkers, R., ... & Mons, B. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3, 160018. https://doi.org/10.1038/sdata.2016.18

Woelfle, M., Olliaro, P., & Todd, M. H. (2011). Open science is a research accelerator. Nature chemistry, 3(10), 745-748. https://doi.org/10.1038/nchem.1149

Zhang, Y., Hua, W., & Yuan, S. (2018). Mapping the scientific research on open data: A bibliometric review. Learned Publishing, 31(2), 95-106. https://doi.org/10.1002/leap.1110

Zhao, D., & Strotmann, A. (2008). Evolution of research activities and intellectual influences in information science 1996–2005: Introducing author bibliographic‐coupling analysis. Journal of the American Society for Information Science and Technology, 59(13), 2070-2086. https://doi.org/10.1002/asi.20910

Downloads

Published

2022-12-15

How to Cite

Lee, J. Y., & Chung, E. (2022). Mapping open science research using a keyword bibliographic coupling analysis network. Information Research an International Electronic Journal, 27(4). https://doi.org/10.47989/irpaper949

Issue

Section

Peer-reviewed papers

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.