Quali-quanti visual methods and political bots

A cross-platform study of pro- & anti-bolsobots

Authors

  • Janna Joceli Omena University of Warwick, United Kingdom; Universidade Nova de Lisboa, Portugal
  • Thais Lobo King’s College London, United Kingdom
  • Giulia Tucci Federal University of Rio de Janeiro, Brazil.
  • Elias Bitencourt Universidade do Estado da Bahia, Brazil
  • Emillie de Keulenaar University of Groningen, Netherlands
  • Francisco W. Kerche University of São Paulo, Brazil
  • Jason Chao University of São Paulo, Brazil
  • Marius Liedtke University of Salzburg, Austria
  • Mengying Li Fudan University, China
  • Maria Luiza Paschoal University of Trento, Italy
  • Ilya Lavrov University of Groningen, Netherlands; University College Dublin, Ireland

DOI:

https://doi.org/10.33621/jdsr.v6i1.215

Keywords:

Digital methods, political bots, coordinated inauthentic behaviour, cross-platform, quali-quanti methods, visual methodologies

Abstract

Computational social science research on automated social media accounts, colloquially dubbed “bots”, has tended to rely on binary verification methods to detect bot operations on social media. Typically focused on textual data from Twitter (now rebranded as "X"), these inference-based methods are prone to finding false positives and failing to understand the subtler ways in which bots operate over time, through visual content and in particular contexts. This research brings methodological contributions to such studies, focusing on what it calls “bolsobots” in Brazilian social media. Named after former Brazilian President Jair Bolsonaro, the bolsobots refer to the extensive and skilful usage of partial or fully automated accounts by marketing teams, hackers, activists or campaign supporters. These accounts leverage online political culture to sway public opinion for or against public policies, opposition figures, or Bolsonaro himself. Drawing on empirical case studies, this paper implements quali-quanti visual methods to operationalise specific techniques for interpreting bot-associated image collections and textual content across Instagram, TikTok and Twitter/X. To unveil the modus operandi of bolsobots, we map the networks of users they follow (“following networks”), explore the visual-textual content they post, and observe the strategies they deploy to adapt to platform content moderation. Such analyses tackle methodological challenges inherent in bot studies by employing three key strategies: 1) designing context-sensitive queries and curating datasets with platforms’ interfaces and search engines to mitigate the limitations of bot scoring detectors, 2) engaging qualitatively with data visualisations to understand the vernaculars of bots, and 3) adopting a non-binary analysis framework that contextualises bots within their socio-technical environments. By acknowledging the intricate interplay between bots, user and platform cultures, this paper contributes to method innovation on bot studies and emerging quali-quanti visual methods literature.

References

Aiello, G. (2020). Visual semiotics: Key concepts and new directions. In: Pauwels, L. and Mannay, D. (Eds). The SAGE Handbook of Visual Research Methods. London: SAGE. https://doi.org/10.4135/9781526417015.

Akyon, F. C. and Kalfaoglu, M. E. (2019). Instagram Fake and Automated Account Detection. In: 2019 Innovations in Intelligent Systems and Applications Conference (ASYU). October 2019. pp.1–7. https://doi.org/0.1109/ASYU48272.2019.8946437.

Assenmacher, D. et al. (2020). Demystifying Social Bots: On the Intelligence of Automated Social Media Actors. Social Media + Society, 6 (3). https://doi.org/10.1177/2056305120939264.

Barbiéri, L. F., Calgaro, F. and Clavery, E. (2019). Ex-aliada de Bolsonaro, Joice detalha à CPMI da Fake News como atua ‘gabinete do ódio’. Available at: https://g1.globo.com/politica/noticia/2019/12/04/ex-aliada-de-bolsonaro-joice-detalha-a-cpmi-da-fake-news-como-atua-gabinete-do-odio.ghtml.

Colombo, G., Bounegru, L. and Gray, J. (2023). Visual Models for Social Media Image Analysis: Groupings, Engagement, Trends, and Rankings. International Journal of Communication, 17 (0), 28. https://ijoc.org/index.php/ijoc/article/view/18971

Colombo, G. and Gaetano, C. D. (2020). Dutch political Instagram: Junk news, follower ecologies and artificial amplification. In: Rogers, R. and Niederer, S. (Eds). The Politics of Social Media Manipulation. Amsterdam University Press, 147–168. https://doi.org/10.1515/9789048551675-006.

Confessore, N., Dance, G. J. X., Harris, R., & Hansen, M. (2018, January 27). The Follower Factory. The New York Times. https://www.nytimes.com/interactive/2018/01/27/technology/social-media-bots.html

Cresci, S., Di Pietro, R., Spognardi, A., Tesconi, M., & Petrocchi, M. (2023). Demystifying Misconceptions in Social Bots Research. Available at: http://arxiv.org/abs/2303.17251.

Cresci, S., Di Pietro, R., Petrocchi, M., Spognardi, A., & Tesconi, M. "The paradigm-shift of social spambots: Evidence, theories, and tools for the arms race." In: International Conference on World Wide Web Companion, 26, 2017. Anais... Perth: International World Wide Web Conference Committee, 2017.

D’Ignazio, C. and Klein, L. F. (2020). Data Feminism. https://doi.org/10.7551/mitpress/11805.001.0001.

Euronews. (2021). Fake news fear as Bolsonaro bids to limit social media content removal. Euronews, April 1. Available at: https://www.euronews.com/2021/09/07/fake-news-fear-as-bolsonaro-bids-to-limit-social-media-content-removal.

Ferrara, Emilio and Varol, Onur and Davis, Clayton B. and Menczer, Filippo and Flammini, Alessandro, The Rise of Social Bots (July 1, 2016). Communications of the ACM 59 (7), 96-104, 2016, Available at SSRN: https://ssrn.com/abstract=2982515

Freitas, C., Benevenuto, F., Ghosh, S., & Veloso, A. "Reverse Engineering Socialbot Infiltration Strategies in Twitter." In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM); August 2015; Paris, France (2015). p. 25–32. doi:10.1145/2808797.2809292.

G1. (2020). 55% de publicações pró-Bolsonaro feitas em dia de manifestação partiram de robôs, diz estudo. G1, 4 April. https://g1.globo.com/politica/noticia/2020/04/04/55percent-de-publicacoes-pro-bolsonaro-feitas-em-dia-de-manifestacao-partiram-de-robos-diz-estudo.ghtml.

Gallwitz, F., & Kreil, M. (2022). Investigating the Validity of Botometer-Based Social Bot Studies. In F. Spezzano, A. Amaral, D. Ceolin, L. Fazio, & E. Serra (Eds.), Disinformation in Open Online Media (pp. 63–78). Springer International Publishing. https://doi.org/10.1007/978-3-031-18253-2_5

Google User Content. (2022). General Guidelines Overview. Available at: https://static.googleusercontent.com/media/guidelines.raterhub.com/pt-BR//searchqualityevaluatorguidelines.pdf.

Gorwa, R., & Guilbeault, D. (2020). Unpacking the Social Media Bot: A Typology to Guide Research and Policy. Policy & Internet, 12(2), 225–248. https://doi.org/10.1002/poi3.184

Gray, J., Bounegru, L. and Venturini, T. (2020). ‘Fake news’ as infrastructural uncanny. New Media & Society, 22 (2), 317–341. https://doi.org/10.1177/1461444819856912.

Grimme, C., Assenmacher, D. and Adam, L. (2018). Changing Perspectives: Is It Sufficient to Detect Social Bots? In: Meiselwitz, G. (Ed). Social Computing and Social Media. User Experience and Behavior. Lecture Notes in Computer Science. Cham: Springer, 445–461. https://doi.org/doi:10.1007/978-3-319-91521-0_32.

Grohmann, R., Aquino, M. C., Rodrigues, A., Matos, É., Govari, C., & Amaral, A. (2022). Click farm platforms: An updating of informal work in Brazil and Colombia. Work Organisation, Labour & Globalisation, 16(2), 7–20. https://www.jstor.org/stable/48691511

Howard, P. N., Woolley, S. and Calo, R. (2018). Algorithms, bots, and political communication in the US 2016 election: The challenge of automated political communication for election law and administration. Journal of Information Technology & Politics, 15 (2), 81–93. https://doi.org/10.1080/19331681.2018.1448735.

Kitchin, R. and Lauriault, T. (2014). Towards Critical Data Studies: Charting and Unpacking Data Assemblages and Their Work. SSRN Scholarly Paper, Rochester, NY. https://papers.ssrn.com/abstract=2474112.

Kemp, S. (2022). Digital 2022: Global Overview Report. We Are Social and Hootsuite. Available at: https://datareportal.com/reports/digital-2022-global-overview-report.

Latour, B. (2010). Tarde’s idea of quantification. In: Candea, M. (Ed). The Social after Gabriel Tarde. Routledge.

Latour, B. et al. (2012). ‘The whole is always smaller than its parts’ – a digital test of Gabriel Tardes’ monads. The British Journal of Sociology, 63 (4), 590–615. https://doi.org/10.1111/j.1468-4446.2012.01428.x.

Li, K. et al. (2018). Knowledge-based entity detection and disambiguation. Available at: https://patents.google.com/patent/US9864808B2/en.

Lindquist, J. (2021). Good Enough Imposters: The Market for Instagram Followers in Indonesia and Beyond. In: Woolgar, S. et al. (Eds). The Imposter as Social Theory: Thinking with Gatecrashers, Cheats and Charlatans. Policy Press, 269-292. https://doi.org/10.1332/policypress/9781529213072.003.0012.

Lindquist, J. (2022). “Follower Factories” in Indonesia and Beyond: Automation and Labor in a Transnational Market. In: Graham, M. and Ferrari, F. (Eds). Digital Work in the Planetary Market. MIT Press, 59–75. https://doi.org/10.7551/mitpress/13835.001.0001.

Lobo, T. and Carvalho, D. (2018). Robôs e desinformação nas redes: O que já se sabe nas eleições 2018. Nexo Jornal. April 1. Available at: https://www.nexojornal.com.br/ensaio/2018/Rob%C3%B4s-e-desinforma%C3%A7%C3%A3o-nas-redes-o-que-j%C3%A1-se-sabe-nas-elei%C3%A7%C3%B5es-2018

Machado, C. et al. (2018). News and Political Information Consumption in Brazil: Mapping the First Round of the 2018 Brazilian Presidential Election on Twitter. Oxford Internet Institute. https://demtech.oii.ox.ac.uk/wp-content/uploads/sites/12/2018/10/machado_et_al.pdf.

Manovich, L. (2016). Instagram and contemporary image. Available at: http://www.manovich.net.

Marres, N. (2018). Why We Can’t Have Our Facts Back. Engaging Science, Technology, and Society, 4, 423–443. https://doi.org/10.17351/ests2018.188.

Marres, N. (2020). For a situational analytics: An interpretative methodology for the study of situations in computational settings. Big Data & Society, 7 (2). https://doi.org/10.1177/2053951720949571.

Martini, F. et al. (2021). Bot, or not? Comparing three methods for detecting social bots in five political discourses. Big Data & Society, 8 (2). https://doi.org/10.1177/20539517211033566.

Meng, C., Luo, H., Meng, X., & Cui, Y. “Differences in Behavioral Characteristics and Diffusion Mechanisms: A Comparative Analysis Based on Social Bots and Human Users.” Frontiers in Physics 10 (April 25, 2022): 875574. https://doi.org/10.3389/fphy.2022.875574.

Messenberg, D. (2019). A cosmovisão da “nova” direita brasileira. In R. Menezes (Ed.), Brasil em transe: Bolsonarismo, nova direita e desdemocratização (p. eBook). Rio de Janeiro: Oficina Raquel. Available at: https://pt.scribd.com/book/438435648/Brasil-em-transe-Bolsonarismo-nova-direita-e-desdemocratizacao

Moats, D. and Borra, E. (2018). Quali-quantitative methods beyond networks: Studying information diffusion on Twitter with the Modulation Sequencer. Big Data & Society, 5 (1). https://doi.org/10.1177/2053951718772137.

Murthy, D. et al. (2016). Bots and political influence: A sociotechnical investigation of social network capital. International Journal of Communication, 10, 4952–4971. https://ijoc.org/index.php/ijoc/article/view/6271.

Observa2018. (2018). Movimento #elenão impulsiona mais de 1,6 milhão de menções. Sala de Democracia Digital FGV-DAPP, September 27. Available at: https://observa2018.dapp.fgv.br/posts/movimento-elenao-impulsiona-mais-de-16-milhao-de-mencoes-no-twitter-contra-e-a-favor-de-bolsonaro/.

Oliveira, N. R. de UNESP. (2020). A febre amarela ‘minions’: uma análise bakhtiniana. Universidade Estadual Paulista (Unesp). https://repositorio.unesp.br/handle/11449/192052.

Omena, J. J. et al. (2019). Bots and the black market of social media engagement. Digital Methods Initiative. Available at: https://wiki.digitalmethods.net/Dmi/SummerSchool2019Botsandtheblackmarket#Bots_and_the_black_market_of_social_media_engagement.

Omena, J. J. et al. (2021a). Profiling Bolsobots Networks. A quali-quanti approach to repurpose Instagram grammars. Digital Methods Initiative. Available at: https://wiki.digitalmethods.net/Dmi/SummerSchool2021BolsobotsNetworks.

Omena, J. J. et al. (2021b). The Potentials of Google Vision API-based Networks to Study Natively Digital Images. Diseña, (19). https://doi.org/10.7764/disena.19.Article.1.

Omena, J. J. (2021). Digital Methods and Technicity-of-the-Mediums. From Regimes of Functioning to Digital Research. Doctoral Thesis. Available at: https://run.unl.pt/handle/10362/127961.

Pereira, L. A. (2022). The hate machine: How Bolsonaro makes use of algorithmic knowledge. Diggit Magazine, 27 April. Available at: https://www.diggitmagazine.com/articles/bolsonaro-algorithmic-knowledge.

Rabello, E. T. et al. (2022). Mapping online visuals of shale gas controversy: a digital methods approach. Information, Communication & Society, 25 (15), 2264–2281. https://doi.org/10.1080/1369118X.2021.1934064.

Rauchfleisch, A. and Kaiser, J. (2020). The False positive problem of automatic bot detection in social science research. PLOS ONE, 15 (10). https://doi.org/10.1371/journal.pone.0241045.

Recuero, R., Soares, F. B. and Gruzd, A. (2020). Hyperpartisanship, Disinformation and Political Conversations on Twitter: The Brazilian Presidential Election of 2018. Proceedings of the International AAAI Conference on Web and Social Media, 14, 569–578.doi:https://doi.org/10.1609/icwsm.v14i1.7324.

Ribeiro, A. and Lobato, I. (2022). Brasileiros viram ‘bots humanos’ em fazendas de clique por menos de 1 centavo. Folha, 21 May. Available at: https://www1.folha.uol.com.br/mercado/2022/05/brasileiros-viram-bots-humanos-em-fazendas-de-clique-por-menos-de-1-centavo.shtml.

Rogers, R. (2019). Doing Digital Methods Paperback with Interactive eBook. London: SAGE Publications.

Ruediger, M. A. (2018a). Bots, Social Networks and Politics in Brazil: Cases of unlawful interference by automated profiles in the public debate. [Caderno de referência] .Vol. 2. Rio de Janeiro: FGV DAPP. Available at: https://bibliotecadigital.fgv.br/dspace/handle/10438/29096?show=full

Ruediger, M. A. (2018b) Disinformation in the digital era: amplifications and panorama of the 2018 elections. [Policy Paper] Rio de Janeiro: FGV DAPP. Available at: https://observa2018.dapp.fgv.br/wp-content/uploads/2019/02/WEBENG-Disinformation-in-the-Digital-Era_PP2.pdf.

Santini, R. M., Salles, D. and Tucci, G. (2021). When Machine Behavior Targets Future Voters: The Use of Social Bots to Test Narratives for Political Campaigns in Brazil. International Journal of Communication, 15(0), 1220–1223. https://ijoc.org/index.php/ijoc/article/view/14803/3379.

Shao, C. et al. (2018). The spread of low-credibility content by social bots. Nature Communications, 9 (1). https://doi.org/10.1038/s41467-018-06930-7.

Shu, K. et al. (2020). The role of user profiles for fake news detection. In: Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. ASONAM ’19. New York, USA: Association for Computing Machinery. January 2020, 436–439. https://doi.org/10.1145/3341161.3342927.

Soares, O. (2020). Oposição lança campanha ‘Devolvam nossa bandeira’. Gazeta, 1 July. Available at: https://www.gazetadopovo.com.br/republica/breves/oposicao-lanca-campanha-devolvam-nossa-bandeira-pelo-uso-dos-simbolos-nacionais/.

Sullivan, D. (2020). A reintroduction to our Knowledge Graph and knowledge panels. Available at: https://blog.google/products/search/about-knowledge-graph-and-knowledge-panels/.

Sunstein, C.R. (2017). #Republic: divided democracy in the age of social media. Princeton University Press, Princeton; Oxford.

Twitter. (2022). Platform manipulation policy. Available at: https://web.archive.org/web/*/https://help.twitter.com/en/rules-and-policies/platform-manipulation.

Varol, O., Ferrara, E., Davis, C., Menczer, F., & Flammini, A. "Online Human-Bot Interactions: Detection, Estimation, and Characterization." In: 11th International AAAI Conference on Web and Social Media, Montreal, Quebec, Canada, 2017.

Venturini, T., Cardon, D. and Cointet, J.-P. (2015). Méthodes digitales: Approches quali/quanti des données numériques - Curation and Presentation of the Special Issue. Réseaux?: communication, technologie, société, 188 (6). https://doi.org/10.3917/res.188.0009.

Venturini, T., Jacomy, M. and Jensen, P. (2021). What do we see when we look at networks: Visual network analysis, relational ambiguity, and force-directed layouts. Big Data & Society, 8 (1), https://doi.org/10.1177/20539517211018488.

Downloads

Published

2024-03-06

Similar Articles

1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.