Undervisning som utvecklar elevers förmåga att förstå likvärdiga bråk

Författare

DOI:

https://doi.org/10.61998/forskul.v12i3.26656

Nyckelord:

matematikundervisning, likvärdiga bråk, learning study, variationsteori

Abstract

Syftet med studien är att bidra med kunskap om vilka möjligheter elever får för att lära sig förstå likvärdiga bråk vid olika lektionsdesigner. För att besvara detta syfte genomfördes en Learning study i tre cykler i årskurs 5 med 58 elever. Elevernas möjligheter till lärande analyserades både kvalitativt genom observation av undervisningen och kvantitativt genom test där eleverna fick visa sina kunskaper om likvärdiga bråk före och efter lektionerna. Lektionerna designades med stöd av variationsteori och matematikdidaktisk forskning. Resultaten visar att eleverna utvecklade sin förmåga i alla tre cykler, särskilt i den sista. Framgångsfaktorer i undervisningen inkluderade lärarens användning av kontraster, tallinjen och ett strukturerat sätt att hantera elevernas svar. Dessa faktorer visade sig vara effektiva för att främja elevernas lärande. Studiens resultat kan användas som underlag för lärare och forskare för att ytterligare öka kunskapen om hur undervisningen kan möjliggöra att elever lär sig förstå likvärdiga bråk.

Teaching that develops students' ability to understand equivalent fractions

The aim of the study is to contribute knowledge about the opportunities students get to learn to understand equivalent fractions through various enacted objects of learning in different lesson designs. To address this, a Learning study was conducted in three cycles in grade 5 with 58 students. Students learning opportunities were analyzed both qualitatively through observations and quantitatively through tests where students demonstrated their knowledge of equivalent fractions before and after the lessons. Lessons were designed with the support of variation theory and mathematics education research. Results show that students improved their ability in all three cycles, especially the last one. Success factors included the teacher's use of contrasts, the number line, and a structured approach to student responses. These factors proved effective in promoting students' learning. Teachers and researchers can use the study's results to increase understanding of how teaching can enable students to learn equivalent fractions.

Författarbiografier

Cecilia Sveider, Linköpings universitet

Cecilia Sveider är fil.dr. i pedagogik med ämnesdidaktisk inriktning vid Linköpings universitet och forskar med fokus på matematikdidaktik för att förbättra undervisning och lärande inom matematik.

Anja Thorsten, Linköpings universitet

Anja Thorsten är docent i pedagogik vid Linköpings universitet med ett särskild intresse för undervisningsutvecklande forskning.

Joakim Samuelsson, Linköpings universitet

Joakim Samuelsson är professor i pedagogik med inriktning mot matematikdidaktik vid Linköpings universitet. Han undervisar på lärarprogrammet och bedriver forskning om undervisning och lärande i matematik, från förskola till gymnasieskola.

Referenser

Bakker, A., Cai, J., English, L., Kaiser, G., Mesa, V. & Van Dooren, W. (2019). Beyond small, medium, or large: Points of consideration when interpreting effect sizes. Educational Studies in Mathematics, 102(1), 1–8. https://doi.org/10.1007/s10649-019-09908-4 DOI: https://doi.org/10.1007/s10649-019-09908-4

Barbieri, C. A., Rodrigues, J., Dyson, N. & Jordan, N. C. (2020). Improving fraction understanding in sixth graders with mathematics difficulties: Effects of a number line approach combined with cognitive learning strategies. Journal of Educational Psychology, 112(3), 628–648. https://doi.org/10.1037/edu0000384 DOI: https://doi.org/10.1037/edu0000384

Björklund Boistrup, L. (2010). Assessment discourses in mathematics classrooms: A multimodal social semiotic study. [Doktorsavhandling, Stockholms universitet].

Bryman, A. (2018). Samhällsvetenskapliga metoder (3 uppl.). Liber.

Boyer, T. W. & Levine, S. C. (2012). Child proportional scaling: Is 1/3=2/6=3/9=4/12? Journal of Experimental Child Psychology, 111(3), 516–533. https://doi.org/10.1016/j.jecp.2011.11.001 DOI: https://doi.org/10.1016/j.jecp.2011.11.001

Cathcart, W. G., Pothier, Y. M., Vance, J. H. & Bezuk, N. S. (2006). Learning mathematics in elementary and middle schools (4 uppl.). Merrill/Prentice Hall.

Cook P. J., Dodge K., Farkas G., Roland G., Fryer R. G., Guryan J., Ludwig J., Mayer S., Pollack H. & Steinberg L. Not too late: Improving academic outcomes for disadvantaged youth. American Economic Review, 113(3), 738–65. DOI: https://doi.org/10.1257/aer.20210434

Cramer, K., Monson, D., Ahrendt, S., Wyberg, T., Pettis, C. & Fagerlund, C. (2019). Reconstructing the unit on the number line: Tasks to extend fourth graders' fraction understandings. Investigations in Mathematics Learning, 11(3), 180–194. https://doi.org/10.1080/19477503.2016.1245035 DOI: https://doi.org/10.1080/19477503.2018.1434594

Dündar, S. (2015). Mathematics teacher-candidates’ performance in solving problems with different representation styles: The trigonometry example. Eurasia Journal of Mathematics, Science and Technology Education, 11(6), 1379–1397. https://doi.org/10.12973/EURASIA.2015.1396A DOI: https://doi.org/10.12973/eurasia.2015.1396a

Dyson, N. I., Jordan, N. C., Rodrigues, J., Barbieri, C., & Rinne, L. (2020). A fraction sense intervention for sixth graders with or at risk for mathematics difficulties. Remedial and special education, 41(4), 244–254. https://doi.org/10.1177/0741932518807139 DOI: https://doi.org/10.1177/0741932518807139

Ekdahl, A.-L. (2019). Teaching for the learning of additive part-whole relations: The power of variation and connections. [Doktorsavhandling, Jönköping University].

Ennis, R. P. & Losinski, M. (2019). Interventions to improve fraction skills for students with disabilities: A meta-analysis. Exceptional Children, 85(3), 367–386. https://doi.org/10.1177/0014402918817504 DOI: https://doi.org/10.1177/0014402918817504

Eriksson, H. (2015). Rationella tal som tal. Algebraiska symboler och generella modeller som medierande redskap. [Licentiatavhandling, Stockholms universitet].

Erlwanger, S. H. (1973). Benny´s conception of rules and answers in IPI mathematics. Journal of Children´s Mathematical Behavior, 1(2), 7–26.

Fazio, L. K., DeWolf, M. & Siegler, R. S. (2016). Strategy use and strategy choice in fraction magnitude comparison. Journal of Experimental Psychology: Learning Memory, and Cognition, 42(1), 1–16. https://doi.org/10.1037/xlm0000153 DOI: https://doi.org/10.1037/xlm0000153

Flores, M. M., Hinton, V. M. & Taylor, J. J. (2018). CRA fraction intervention for fifth-grade students receiving tier two interventions. Preventing School Failure, 62(3), 198–213. https://doi.org/10.1080/1045988X.2017.1414027 DOI: https://doi.org/10.1080/1045988X.2017.1414027

Fuchs, L. S., Schumacher, R. F., Long, J., Namkung, J., Hamlett, C. L., Cirino, P. T., Jordan, N. C., Siegler, R., Gersten, R. & Changas, P. (2013). Improving at-risk learners’ understanding of fractions. Journal of Educational Psychology, 105(3), 683–700. https://doi.org/10.1037/a0032446 DOI: https://doi.org/10.1037/a0032446

Fuchs, L., Malone, A., Schumacher, R., Namkung, J. & Wang, A (2017). Fraction intervention for students with mathematics difficulties: Lessons learned from five randomized controlled trials. Journal of Learning Disabilities, 50(6), 631–639. http://doi.org/10.1177/0022219416677249 DOI: https://doi.org/10.1177/0022219416677249

Fuchs, L. S., Newman-Gonchar, R., Schumacher, R., Dougherty, B., Bucka, N., Karp, K. S., Woodward, J., Clarke, B., Jordan, N. C., Gersten, R., Jayanthi, M., Keating, B. & Morgan, S. (2021). Assisting students struggling with mathematics: Intervention in the elementary grades (WWC 2021006). National Center for Education Evaluation and Reginal Assistance (NCEE), Institute of Education Sciences, U.S. Department of Education.

Hair, J. F., Black, W. C., Babin, B. J. & Anderson, R. E. (2010). Multivariate data analysis (7 uppl.). Prentice-Hall.

Hamdan, N. & Gunderson, E. A. (2017). The number line is a critical spatial-numerical representation: Evidence from a fraction intervention. Developmental Psychology, 53(3), 587–596. https://doi.org/10.1037/dev0000252 DOI: https://doi.org/10.1037/dev0000252

Hecht, S. A., Close, L. & Santisi, M. (2003). Sources of individual differences in fraction skills. Journal of Experimental Child Psychology, 86(4), 277–302. https://doi.org/10.1016/j.jecp.2003.08.003 DOI: https://doi.org/10.1016/j.jecp.2003.08.003

Hudson, P. P. & Miller, S. P. (2006). Designing and implementing mathematics instruction for students with diverse learning needs. Pearson.

Huges, C. A., Morris, J. R., Therrien, W. J. & Benson, S. K. (2017). Explicit Instruction: Historical and contemporary context. Learning Disabilities Research and Practice, 32(3), 140–148. https://doi.org/10.1111/ldrp.12142 DOI: https://doi.org/10.1111/ldrp.12142

Huinker, D. (2002). Examining dimensions of fraction operation sense. I B. Litwiller (Red.), Making sense of fractions, ratios, and proportions (s. 72–78). National Council of Teachers of Mathematics.

Inagaki, K., Morita, E. & Hatano, G. (1999). Teaching-learning of evaluative criteria for mathematical arguments through classroom discourse: A cross-national study. Mathematical Thinking and Learning, 1(2), 93–111. https://doi.org/10.1207/S15327833MTL0102_1 DOI: https://doi.org/10.1207/s15327833mtl0102_1

Jigyel, K. & Afamasaga-Fuataí, K. (2007). Models of fractions and equivalence. Australian Mathematics Teacher, 63(4), 17–25.

Jordan, N. C., Resnick, I., Rodrigues, J., Hansen, N. & Dyson, N. (2017). Delaware longitudinal study of fraction learning: Implications for helping children with mathematics difficulties. Journal of Learning Disabilities, 50(6), 621–630. https://doi.org/10.1177/0022219416662033 DOI: https://doi.org/10.1177/0022219416662033

Kamii, C. & Clark, F. B. (1995). Equivalent fractions: Their difficulty and educational implications. The Journal of Mathematical Behavior, 14(4), 365–378. https://doi.org/10.1016/0732-3123(95)90035-7 DOI: https://doi.org/10.1016/0732-3123(95)90035-7

Karlsson, E. & Wennergren, A. C. (2014). Att använda elevsvar i undervisningen. Forskning om undervisning och lärande, (13), 53–66. https://doi.org/10.61998/forskul.v2i13.27562 DOI: https://doi.org/10.61998/forskul.v2i13.27562

Kiselman, C. & Mouwitz, L. (2008). Matematiktermer för skolan (1 uppl.). Nationellt centrum för matematikutbildning, Göteborgs universitet.

Kilpatrick, J., Swafford, J. & Findell, B. (2001). Adding it up: Helping children learn mathematics. National Academy Press.

Kullberg, A. & Runesson, U. (2013). Learning about the numerator and denominator in teacher-designed lessons. Mathematics Education Research Journal, 25(4), 547–567. https://doi.org/10.1007/s13394-013-0080-9 DOI: https://doi.org/10.1007/s13394-013-0080-9

Lamon, S. (2020). Teaching fractions and ratios for understanding: Essential content knowledge and instructional strategies for teacher (4 uppl.). Lawrence Erlbaum Associates. DOI: https://doi.org/10.4324/9781003008057

Larsson, S. (2005). Om kvalitet i kvalitativa studier. Nordisk Pedagogik, 25(1), 25–38. DOI: https://doi.org/10.18261/ISSN1891-5949-2005-01-01

Lee, S. J., Brown, R. E. & Orrill, C. H. (2011). Mathematics teachers’ reasoning about fractions and decimals using drawn representations. Mathematical Thinking and Learning, 13(3), 198–220. https://doi.org/10.1080/10986065.2011.564993 DOI: https://doi.org/10.1080/10986065.2011.564993

Lesh, R. (1981). Applied mathematical problem solving. Educational Studies in Mathematics, 12, 235–264. https://doi.org/10.1007/BF00305624 DOI: https://doi.org/10.1007/BF00305624

Levenson, E. (2010). Fifth-grade students’ use and preferences for mathematically and practically based explanations. Educational Studies in Mathematics, 73(2), 121–142. https://doi.org/10.1007/s10649-009-9208-y DOI: https://doi.org/10.1007/s10649-009-9208-y

Lo, M. L. (2014). Variation theory and the improvement of teaching and learning. Acta Universitatis Gothoburgensis.

Manula, T. (2018). Students’ and teachers’ jointly constituted learning opportunities. [Doktorsavhandling, Göteborgs universitet]

Marton, F. (2015). Necessary conditions of learning. Routledge. DOI: https://doi.org/10.4324/9781315816876

Marton, F. & Booth, S. (2000). Om lärande. Studentlitteratur.

Mills, J. (2016). Developing conceptual understanding of fractions with year five and six students. I B. White, M. Chinappan & S. Trenholm (Red.), Opening up mathematics education research (Proceedings of the 39th annual conference of the Mathematics Education Research Group of Australasia) (s. 479–486). MERGA.

Mercer, S. (2018). Psychology for language learning: Spare a thought for the teacher. Language Teaching, 51(1), 1–22. https://doi.org/10.1017/S0261444817000258 DOI: https://doi.org/10.1017/S0261444817000258

Moss, J. (2005). Pipes, tubes, and breakers: New approaches to teaching the rational number system. I M. S. Donovan & J. D. Bransford (Red.), How students learn: history, math, and science in the classroom (s. 121–162). National Academies Press.

Pang, M. F. & Ki, W. W. (2016). Revisiting the idea of ‘critical aspects’. Scandinavian Journal of Educational Research, 60(3), 323–336. https://doi.org/10.1080/00313831.2015.1119724 DOI: https://doi.org/10.1080/00313831.2015.1119724

Pedersen, P. & Bjerre, M. (2021). Two conceptions of fraction equivalence. Educational Studies in Mathematics, 107(1), 135–157. https://doi.org/10.1007/s10649-021-10030-7 DOI: https://doi.org/10.1007/s10649-021-10030-7

Rodrigues J., Dyson N., Hansen N. & Jordan N. C. (2016). Preparing for algebra by building fraction sense. Teaching Exceptional Children, 49, 134–141. https://doi.org/10.1177/0040059916674326 DOI: https://doi.org/10.1177/0040059916674326

Ruiz-Primo, M., Shavelson, R., Hamilton, L. & Klein, S. (2002). On the evaluation of systemic science education reform: Searching for instructional sensitivity. Journal of Research in Science Teaching, 39, 369–393. https://doi.org/10.1002/tea.10027 DOI: https://doi.org/10.1002/tea.10027

Schneider, M. & Siegler, R. S. (2010). Representations of the magnitudes of fractions. Journal of Experimental Psychology: Human Perception and Performance, 36(5), 1227–1238. https://doi.org/10.1037/a0018170 DOI: https://doi.org/10.1037/a0018170

Schumacher, R. F., Jayanthi, M., Gersten, R., Dimino, J., Spallone, S. & Haymond, K. S. (2018). Using the number line to promote understanding of fractions for struggling fifth graders: A formative pilot study. Learning Disabilities Research & Practice, 33(4), 192–206. https://doi.org/10.1111/ldrp.12169 DOI: https://doi.org/10.1111/ldrp.12169

Sidney, P. G., Thompson, C. A. & Rivera, F. D. (2019). Number lines, but not area models, support children’s accuracy and conceptual models of fraction division. Contemporary Educational Psychology, 58, 288–298. https://doi.org/10.1016/j.cedpsych.2019.03.011 DOI: https://doi.org/10.1016/j.cedpsych.2019.03.011

Siegler, R. S. & Lortie-Forgues, H. (2017). Hard lessons: Why rational number arithmetic is so difficult for so many people. Current Directions in Psychological Science, 26(4). https://doi.org/10.1177/0963721417700129 DOI: https://doi.org/10.1177/0963721417700129

Siegler, R. S. & Pyke, A. A. (2013). Developmental and individual differences in understanding of fractions. Developmental Psychology, 49(10), 1994–2004. https://doi.org/10.1037/a0031200 DOI: https://doi.org/10.1037/a0031200

Siegler, R. S., Thompson, C. A. & Schneider, M. (2011). An integrated theory of whole number and fractions development. Cognitive Psychology, 62(4), 273–296. https://doi.org/10.1016/j.cogpsych.2011.03.001 DOI: https://doi.org/10.1016/j.cogpsych.2011.03.001

Siegler, R., Carpenter, T., Fennell, F., Geary, D., Lewis, J., Okamoto, Y., Thompson, L. & Wray, J. (2010). Developing effective fractions instruction for kindergarten through 8th grade: A practice guide (NCEE #2010-4039). National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education.

Skolverket. (2008). TIMSS 2007: Svenska grundskoleelevers kunskaper i matematik och naturvetenskap i ett internationellt perspektiv (Rapport 323).

Sun, X. (2015). “Variation problems” and their roles in the topic of fraction division in Chinese mathematics textbook examples. Educational Studies in Mathematics, 76(1), 65–85. https://doi.org/10.1007/s10649-010-9263-4 DOI: https://doi.org/10.1007/s10649-010-9263-4

Svanteson Wester, J. (2022). Teaching and learning mathematics with integrated small-group discussions. A learning study about scaling geometric figures. [Doktorsavhandling, Göteborgs universitet].

Sveider, C. (2021). Representationer av tal i bråkform. En studie om matematikundervisning på mellanstadiet. [Doktorsavhandling, Linköpings universitet]. DOI: https://doi.org/10.3384/diss.diva-178048

Tian, J., Braithwaite, D. W. & Siegler, R. S. (2021). Distributions of textbook problems predict student learning: Data from decimal arithmetic. Journal of Educational Psychology, 113(3), 516–529. https://doi.org/10.1037/edu0000618 DOI: https://doi.org/10.1037/edu0000618

Tunç-Pekkan, Z. (2015). An analysis of elementary school children’s fractional knowledge depicted with circle, rectangle, and number line representations. Educational Studies in Mathematics, 89, 419–441. https://doi.org/10.1007/s10649-015-9606-2 DOI: https://doi.org/10.1007/s10649-015-9606-2

Van de Walle, J. A., Karp, K. S. & Bay-Williams, J. M. (2018). Elementary and middle school mathematics: teaching developmentally (10 uppl.). Pearson.

Van Steenbrugge, H. V, Lesage, E., Valcke, M. & Desoete, A. (2014). Preservice elementary school teachers ’ knowledge of fractions : A mirror of students ’ knowledge? Journal of Curriculum Studies, 46(1), 138–161. https://doi.org/10.1080/00220272.2013.839003 DOI: https://doi.org/10.1080/00220272.2013.839003

Vetenskapsrådet. (2017). God forskningsed [elektronisk resurs].

Wang, A. Y., Fuchs, L. S., Fuchs, D., Gilbert, J. K., Krowka, S. & Abramson, R. (2019). Embedding self-regulation instruction within fractions intervention for third graders with mathematics difficulties. Journal of Learning Disabilities, 52, 337–348. https://doi.org/10.1177/0022219419851750 DOI: https://doi.org/10.1177/0022219419851750

Watson, A. & Mason, J. (2006). Seeing an exercise as a single mathematical object: Using variation to structure sense-making. Mathematical Thinking and Learning, 8(2), 91–111. https://doi.org/10.1207/s15327833mtl0802_1 DOI: https://doi.org/10.1207/s15327833mtl0802_1

Vig, R., Murray, E. & Star, J. R. (2014). Model breaking points conceptualized. Educational Psychology Review, 26, 73–90. https://doi.org/10.1007/s10648-014-9254-6 DOI: https://doi.org/10.1007/s10648-014-9254-6

Vikström, A., Kullberg, A. & Runesson Kempe, U. (2017, 29 aug-2 sep). Can public knowledge be created through practitioner research?: Learning studies and variation theory as mechanisms and strategies behind knowledge production in practitioners´ research [konferenspresentation] 17:e Biennial EARLI 2017, Tampere, Finland.

Wong, M. (2013). Locating fractions on a number line. Australian Primary Mathematics Classroom, 18(4), 22–26.

Downloads

Publicerad

2024-10-14

Referera så här

Sveider, C., Thorsten, A., & Samuelsson, J. (2024). Undervisning som utvecklar elevers förmåga att förstå likvärdiga bråk. Forskning Om Undervisning Och lärande, 12(3), 39–59. https://doi.org/10.61998/forskul.v12i3.26656

Nummer

Sektion

Originalartiklar

Kategorier

Liknande artiklar

1 2 3 4 5 6 7 8 9 10 > >> 

Du kanske också starta en avancerad sökning efter liknande artiklar för den här artikeln.