Progression i elevers begreppsliga kunskap om tal i bråkform som delar av helhet

Författare

DOI:

https://doi.org/10.61998/forskul.v13i2.25297

Nyckelord:

matematik, begreppslig kunskap, tal i bråkform, progression

Abstract

För att utveckla elevers begreppsliga kunskap i matematik behöver lärare ha djupa insikter om elevers kunskapsprogression, men forskning visar att detta varierar stort mellan lärare. Studiens syfte är att bidra med förståelse för hur elevers begreppsliga kunskap om tal i bråkform som delar av helhet kan beskrivas som handlingar på olika kvalitativa nivåer. Grundskoleelevers skriftliga lösningar på problem som handlar om tal i bråkform har analyserats med fokus på om eleverna identifierar, urskiljer eller använder olika egenskaper, principer och relationer hos och mellan begrepp. Resultatet visar fyra nivåer där elever går från att urskilja och identifiera ett fåtal egenskaper och principer, hos begrepp som de har svårt att använda, till att urskilja flera egenskaper och principer vars relationer de sedan använder för att dra slutsatser. Denna progressionsbeskrivning kan användas praktiskt för att planera för undervisning som utvecklar elevers begreppsliga kunskap men också som teoretisk utgångspunkt för liknande studier inom andra matematikområden.

Progression in students’ conceptual knowledge about fractions as parts of a whole

To develop students' conceptual understanding in mathematics, teachers need deep insights into students' knowledge progression; however, research shows that this varies significantly among teachers. This study aims to contribute to an understanding of how students' conceptual knowledge of fractions as parts of a whole can be described in terms of actions on different qualitative levels. Elementary students' written solutions to problems involving fractions have been analyzed with a focus on whether the students identify, discern, or use various properties, principles, and relationships within and between concepts. The results show four levels, where students progress from discerning and identifying a few properties and principles—within concepts they struggle to use—to discerning multiple properties and principles whose relationships they then use to draw conclusions. This description of progression can be applied practically to plan teaching that develops students' conceptual understanding, and also serves as a theoretical starting point for similar studies in other areas of mathematics.

Författarbiografier

Anna Teledahl, Örebro universitet

Anna Teledahl är lektor i matematikdidaktik vid enheten för matematik vid Örebro universitet. Hon undervisar blivande förskollärare, grundlärare och ämneslärare i matematik och matematikdidaktik. Hon är utbildad lärare och har arbetat 15 år som Ma/No-lärare i årskurserna 7–9.  Anna disputerade 2016 och hennes huvudsakliga forskningsintresse är elevers skriftliga kommunikation i matematik.

Frida Harvey, Örebro universitet

Frida Harvey är adjunkt och doktorand i matematikdidaktik vid Örebro universitet. Hon undervisar blivande förskollärare och grundlärare i matematik och matematikdidaktik. Hon är utbildad lärare i matematik och idrott och har tidigare arbetat som matematiklärare och matematikutvecklare i årskurserna 3–6. Fridas doktorandstudier är fokuserade på matematiklärares kollegiala lärande.

Magnus Esbjörner, Örebro universitet och Örebro kommun

Magnus Esbjörner är legitimerad lärare i matematik och förstelärare. Han undervisar i grundskolan i Örebro kommun och har tidigare arbetat som lärarutbildare vid Örebro universitet. Magnus är särskilt intresserad av samtalets roll i matematikundervisningen.

Samuel von Malortie

Samuel von Malortie är legitimerad lärare i matematik för årskurs 4–9 och har undervisat högstadieelever sedan examen 2009. Samuel är särskilt intresserad av matematikdidaktik och hur undervisning kan väcka nyfikenhet och intresse för matematik hos elever. Bråkundervisning, primtal och algebra är områden som engagerar lite extra, men i grunden finns ett brett intresse för elevers lärande och utveckling inom hela matematikämnet.

Referenser

Ahl, L. M. & Helenius, O. (2021). Ett ramverk för progression. Nämnaren, 2, 39–44.

Ball, D. L. & Peoples B. (2007). Assessing a student's mathematical knowledge by way of interview. I A. H. Schoenfeld (Red.), Assessing mathematical proficiency (s. 213–268). Cambridge University Press. https://doi.org/10.1017/CBO9780511755378 DOI: https://doi.org/10.1017/CBO9780511755378.021

Behr, M., Harel, G., Post, T. & Lesh, R. (1992). Rational number, ratio, and proportion. I D. Grouws (Red.), Handbook of research on mathematics teaching and learning : A project of the National Council of Teachers of Mathematics (s. 296–333). Macmillan.

Behr, M., Lesh, R., Post, T. & Silver E. (1983). Rational number concepts. I R. Lesh & M. Landau (Red.), Acquisition of mathematics concepts and processes (s. 91–125). Academic Press. https://doi.org/10.1037/13620-004

Braithwaite, D. W. & Siegler, R. S. (2017). Developmental changes in the whole number bias. Developmental Science, 21(2), 1–13. https://doi.org/10.1111/desc.12541 DOI: https://doi.org/10.1111/desc.12541

Braun, V. & Clarke, V. (2012). Thematic analysis. I H. Cooper (Red.), APA handbook of research methods in psychology: Vol. 2. Research designs: Quantitative, qualitative, neuropsychological, and biological (s. 57–71). American Psychological Association. https://doi.org/10.1037/13620-004 DOI: https://doi.org/10.1037/13620-004

Carlgren, I. (2023). Vad kan den som kan? – (ämnes)kunnande som centralt forskningsobjekt i ämnesdidaktisk forskning. Forskning om undervisning och lärande, 11(3), 6–23. https://doi.org/10.61998/forskul.v11i3.18034 DOI: https://doi.org/10.61998/forskul.v11i3.18034

Charalambous, C. & Pitta-Pantazi, D. (2007). Drawing on a theoretical model to study students’ understandings of fractions. Educational Studies in Mathematics, 64(3), 293–316. https://doi.org/10.1007/s10649-006-9036-2 DOI: https://doi.org/10.1007/s10649-006-9036-2

Clements, D. H., & Sarama, J. (2004). Learning trajectories in mathematics education. Mathematical Thinking and Learning, 6(2), 81–89. https://doi.org/10.1207/s15327833mtl0602_1 DOI: https://doi.org/10.1207/s15327833mtl0602_1

Crooks, N. M. & Alibali, M. W. (2014). Defining and measuring conceptual knowledge in mathematics. Developmental Review, 34(4), 344–377. https://doi.org/10.1016/j.dr.2014.10.001 DOI: https://doi.org/10.1016/j.dr.2014.10.001

de Jong, T. & Ferguson-Hessler, M. G. M. (1996). Types and qualities of knowledge. Educational Psychologist, 31(2), 105–113. https://doi.org/10.1207/s15326985ep3102_2 DOI: https://doi.org/10.1207/s15326985ep3102_2

Gabriel, F., Coché, F., Szucs, D., Carette, V. Rey, B. & Content, A. (2013). A componental view of children's difficulties in learning fractions. Frontiers in Psychology, 4, 1–11. https://doi.org/10.3389/fpsyg.2013.00715 DOI: https://doi.org/10.3389/fpsyg.2013.00715

Getenet, S. & Callingham, R. (2017). Teaching fractions for understanding: Addressing interrelated concepts. I A. Downton, S. Livy & J. Hall (Red.), 40 years on: We are still learning! Proceeding of the 40th Annual Conference of the Mathematics Education Research Group of Australia (s. 277–284). MERGA.

Greeno, J. G. (1993). For research to reform education and cognitive science. I L. A. Penner, G. M. Batsche, H. M. Knoff & D. L. Nelson (Red.), The challenge in mathematics and science education: Psychology's response (s. 153–192). American Psychological Association.

Hackenberg, A. J. & Sevinc, S. (2022). Middle school students’ construction of reciprocal reasoning with unknowns. The Journal of Mathematical Behavior, 65, 1–20. https://doi.org/10.1016/j.jmathb.2021.100929 DOI: https://doi.org/10.1016/j.jmathb.2021.100929

Hatano, G. & Inagaki, K. (1986). Two courses of expertise. I H. W. Stevenson, H. Azuma & K. Hakuta (Red.), Child development and education in Japan (s. 262–272). Freeman.

Helenius, O., Rystedt, E. & Trygg, L. (2021). Representationer, uttrycksformer och begrepp. Lärportalen. [elektronisk resurs]

Hiebert, J. & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis. I J. Hiebert (Red.), Conceptual and procedual knowledge: The case of mathematics (s. 1–27). Erlbaum.

Hill, H. C., Blunk, M. L., Charalambous, C. Y., Lewis, J. M., Phelps, G. C., Sleep, L. & Ball, D. L. (2008). Mathematical knowledge for teaching and the mathematical quality of instruction: An exploratory study. Cognition and Instruction, 26(4), 430–511. https://doi.org/10.1080/07370000802177235 DOI: https://doi.org/10.1080/07370000802177235

Jäder, J. & Johansson, H. (2025). Exploring students’ conceptual understanding through mathematical problem solving: students’ use of and shift between different representations of rational numbers. Research in Mathematics Education, 1–18. https://doi.org/10.1080/14794802.2025.2456840 DOI: https://doi.org/10.1080/14794802.2025.2456840

Jäder, J., Lithner, J. & Sidenvall, J. (2020). Mathematical problem solving in textbooks from twelve countries. International Journal of Mathematical Education in Science and Technology, 51(7), 1120–1136. https://doi.org/10.1080/0020739X.2019.1656826 DOI: https://doi.org/10.1080/0020739X.2019.1656826

Kazemi, E. & Stipek, D. (2001). Promoting conceptual thinking in four upper-elementary mathematics classrooms. The Elementary School Journal, 102(1), 59–80. https://doi.org/10.1086/499693 DOI: https://doi.org/10.1086/499693

Kieren, T. E. (1976). On the mathematical, cognitive, and instructional foundations of rational numbers. I R. A. Lesh (Red.), Number and Measurement: Papers from a research workshop (s. 101–144). ERIC/SMEAC.

Ladegaard Pedersen, P. & Bjerre, M. (2021). Two conceptions of fraction equivalence. Educational Studies in Mathematics, 107, 135–157. https://doi.org/10.1007/s10649-021-10030-7 DOI: https://doi.org/10.1007/s10649-021-10030-7

Löwing, M. (2016). Diamant - diagnoser i matematik: ett kartläggningsmaterial baserat på didaktisk ämnesanalys. Acta universitatis Gothoburgensis.

Meert, G., Grégoire, J. & Noël, M. P. (2010). Comparing the magnitude of two fractions with common components: which representations are used by 10- and 12-year-olds? Journal of Experimental Child Psychology, 107(3), 244–259. https://doi.org/10.1016/j.jecp.2010.04.008 DOI: https://doi.org/10.1016/j.jecp.2010.04.008

Nagy, C. (2017). Fler bråk i matematikundervisningen. [Licentiatavhandling, Göteborgs universitet]. http://hdl.handle.net/2077/54705

Neuman, D. (1993). Early conceptions of fractions: A phenomenographic approach. I I. Hirabayashi, N. Nohda, K. Shigematsu and F. Lin (Red.), Proceedings of the Seventeeth International Conference for the Psychology of Mathematics Education VoI. III (s. 170–177), University of Tsukuba.

Obersteiner, A., Dresler, T., Bieck, S. M. & Moeller, K. (2019). Understanding fractions: integrating results from mathematics education, cognitive psychology, and neuroscience. I A. Norton & M. W. Alibali (Red.), Constructing number. Research in Mathematics Education (s. 135–162). Springer. https://doi.org/10.1007/978-3-030-00491-0_7 DOI: https://doi.org/10.1007/978-3-030-00491-0_7

Petersson, J. (2015). Från brakljud till bråkbegrepp. Nämnaren, (1), 14–18.

Pitkethly, A. & Hunting, R. (1996). A review of recent research in the area of initial fraction concepts. Educational Studies in Mathematics, 30, 5–38. https://doi.org/10.1007/BF00163751 DOI: https://doi.org/10.1007/BF00163751

Richland, L. E., Stigler, J. W. & Holyoak, K. J. (2012). Teaching the conceptual structure of mathematicts. Educational Psychologist, 47(3), 189–203. https://doi.org/10.1080/00461520.2012.667065 DOI: https://doi.org/10.1080/00461520.2012.667065

Sadler, D. R. (2009). Transforming holistic assessment and grading into a vehicle for complex learning. I G. Joughin (Red.), Assessment, learning and judgement in higher education (s. 1–19). Springer. https://doi.org/10.1007/978-1-4020-8905-3_4 DOI: https://doi.org/10.1007/978-1-4020-8905-3_4

Schoenfeld, A.H. (2014). What makes for powerful classrooms, and how can we support teachers in creating them? A story of research and practice, productively intertwined. Educational Researcher, 43(8), 404–412. https://doi.org/10.3102/0013189X14554450 DOI: https://doi.org/10.3102/0013189X14554450

Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22, 1–36. https://doi.org/10.1007/BF00302715 DOI: https://doi.org/10.1007/BF00302715

Simon, M. A., Placa, N., Avitzur, A. & Kara, M. (2018). Promoting a concept of fraction-as-measure: A study of the Learning Through Activity research program. The Journal of Mathematical Behavior, 52, 122–133. https://doi.org/10.1016/j.jmathb.2018.03.004 DOI: https://doi.org/10.1016/j.jmathb.2018.03.004

Singh, P., Hoon, T. S., Nasir, N. A, Han, C. T., Rasid, S. M. & Hoong, J. B. Z. (2021). Obstacles faced by students in making sense of fractions. The European Journal of Social & Behavioural Science, 30(1) 34–51. https://doi.org/10.15405/ejsbs.287 DOI: https://doi.org/10.15405/ejsbs.287

Skolverket. (2022). Läroplan för grundskolan samt för förskoleklassen och fritidhemmet (Lgr22).

Star, J. R. (2007). Foregrounding procedural knowledge. Journal for Research in Mathematics Education, 38(2), 132–135.

Star, J. R. & Stylianides, G. J. (2013). Procedural and conceptual knowledge: Exploring the gap between knowledge type and knowledge quality. Canadian Journal of Science, Mathematics and Technology Education, 13(2), 169–181. https://doi.org/10.1080/14926156.2013.784828 DOI: https://doi.org/10.1080/14926156.2013.784828

Steffe, L. P. (2001). A new hypothesis concerning children’s fractional knowledge. The Journal of Mathematical Behavior, 20(3), 267–307. https://doi.org/10.1016/S0732-3123(02)00075-5 DOI: https://doi.org/10.1016/S0732-3123(02)00075-5

Steffe, L. P. & Olive, J. (2010). Children’s fractional knowledge. Springer. https://doi.org/10.1007/978-1-4419-0591-8 DOI: https://doi.org/10.1007/978-1-4419-0591-8

Strother, S., Brendefur, J. L., Thiede, K. & Appleton, S. (2016). Five key ideas to teach fractions and decimals with understanding. Advances in Social Sciences Research Journal, 3(2), 132–137. https://doi.org/10.14738/assrj.32.1832 DOI: https://doi.org/10.14738/assrj.32.1832

Suurtamm, C., Thompson, D. R., Kim, R. Y., Moreno, L. D., Sayac, N., Schukajlow, S., Silver, E. A., Ufer, S. & Vos, P. (2016). Assessment in mathematics education: large-scale assessment and classroom assessment. Springer. https://doi.org/10.1007/978-3-319-32394-7 DOI: https://doi.org/10.1007/978-3-319-32394-7

Säfström, A. I. (2017). Progression i högre utbildning. Högre Utbildning, 7(1), 56–75. https://doi.org/10.23865/hu.v7.955 DOI: https://doi.org/10.23865/hu.v7.955

Tchoshanov, M. A. (2011). Relationship between teacher knowledge of concepts and connections, teaching practice, and student achievement in middle grades mathematics. Educational Studies in Mathematics, 76, 141–164. https://doi.org/10.1007/s10649-010-9269-y DOI: https://doi.org/10.1007/s10649-010-9269-y

Tossavainen, A. & Helenius, O. (2024). Student teachers’ conceptions of fractions: A framework for the analysis of different aspects of fractions. Mathematics Teacher Education and Development, 26(1), 1–20

van den Heuvel-Panhuizen, M. (1996). Assessment and realistic mathematics education. [Doktorsavhandling, Utrecht University]

Vetenskapsrådet (2017). God forskningssed.

Wellberg, S., Briggs, D. C. & Student, S. R. (2023). Big ideas in the understanding of fractions: A learning progression. Center for Assessment, Design, Research and Evaluation (CADRE),CU Boulder School of Education. DOI: https://doi.org/10.3102/1888140

Yetim, S. & Alkan, R. (2013). How middle school students deal with rational numbers? A mixed method research study. Eurasia Journal of Mathematics, Science & Technology Education, 9(2), 213–221. https://doi.org/10.12973/eurasia.2013.9211a DOI: https://doi.org/10.12973/eurasia.2013.9211a

Downloads

Publicerad

2025-09-04

Referera så här

Teledahl, A., Harvey, F., Esbjörner, M., & von Malortie, S. (2025). Progression i elevers begreppsliga kunskap om tal i bråkform som delar av helhet. Forskning Om Undervisning Och lärande, 13(2), 70–95. https://doi.org/10.61998/forskul.v13i2.25297

Liknande artiklar

1 2 3 4 5 6 7 8 9 10 > >> 

Du kanske också starta en avancerad sökning efter liknande artiklar för den här artikeln.